
DB2

Web Services Object Runtime Framework:
Implementing DB2 Web
Services

���

DB2

Web Services Object Runtime Framework:
Implementing DB2 Web
Services

���

Note
Before using this information and the product it supports, read the information in Appendix F, “Notices” on page 91.

First Edition (September, 2002)

This document contains proprietary information of IBM®. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Who should read this document v
Related information v
How to send your comments vi

Chapter 1. Web services Object Runtime
Framework 1
Overview 1
Features 1
The DADX file. 3

Chapter 2. Installing and configuring
WORF 5
Software requirements for UNIX® and Windows . . 5
Downloading and accessing WORF 6
Configuring WORF for WebSphere Application
Server on UNIX and Windows 6

Installing the software requirements 6
Installing WORF on WAS Version 4.01 or Version
5.0 7
Using connection pooling to improve
performance 10
Troubleshooting 10

Configuring WORF for Apache Jakarta Tomcat on
UNIX and Windows 11

Installing the software requirements 11
Installing WORF on Apache Jakarta Tomcat . . 12

Chapter 3. Creating a DB2 Web service
with WORF 15
Scenario 15

Testing the Web service 15
Accessing the Web service 17
SOAP binding 18
Web services definition language 18
UDDI business registries 19
XML schema definitions 19
Documentation 20
Automatic Reloading 21

Overview of the process 21
Defining a group of Web services 22

Before you begin 22
Defining the web.xml and group.properties files 23
Customizing the group.properties file 25

Defining the Web service with the DADX file . . . 26
Syntax of the DADX file 26
A simple DADX 33
XML collection operations 34
Using overrides in the DADX 35
Declaring and referencing parameters in the
DADX 37
DADX operation examples 39

Chapter 4. Packaging your DB2 Web
service. 47
Generating deployment descriptors 47
Creating the WAR file 48
Testing the Web service 49

Chapter 5. Generating XSD and WSDL
files from the DADX 51
Converting a DTD to an XSD file 51
Generating WSDL from the DADX 51
Generating WSDL for UDDI registration. 52

Appendix A. DADX environment
checker 55
Purpose and operation of the DADX environment
checker 55

Installing the DADX environment checker . . . 55
Running the DADX environment checker 56

Parameters 56
Sample files 57

Indicating errors and warnings in the output text
file 57
Checks performed by the DADX environment
checker 58

Connection to the database with which the group
is associated 58
Checks performed on the web.xml. 58
Checks performed on NST files. 59
Checks performed on DAD files 60
Checks on DADX files 61

Appendix B. XML schema for the DADX
file 63

Appendix C. Sample files 73
PartOrder DADX file 74
getstart_xcollection.dad file 76
POIAPartOrders.dadx file 77
WSDL files 79

Appendix D. Encoding algorithm . . . 87

Appendix E. Command reference . . . 89

Appendix F. Notices 91
Trademarks 93

Bibliography 95

Index 97

Contacting IBM 99

© Copyright IBM Corp. 2002 iii

Product information 99

iv Web Services Object Runtime Framework: Implementing DB2 Web Services

About this document

The information in this document provides concepts and steps for creating Web
services in DB2® using the Web services Object Runtime Framework (WORF) and
optionally DB2 XML Extender. The framework uses a document access definition
extension (DADX) file to generate the Web services, called DADX Web services. In
this document you will find the following information:
v A description of WORF
v Set-up information for running WORF on WebSphere® Application Server

Advanced Edition, Single Edition, or Extended Edition, or Apache Jakarta
Tomcat

v Syntax and examples for the DADX file
v Details for generating Web Service Definition Language (WSDL) and XML

schema (XSD) files, including support for UDDI Best Practices
v Details of running the DADX checker

Who should read this document
This document is written for Web application developers who want to create Web
services that access DB2 and XML data that is stored in DB2. Some basic database
knowledge is assumed as well as knowledge of XML Web services, Simple Object
Access Protocol (SOAP), and Web Service Definition Language (WSDL). Many
examples and some functions require DB2 XML Extender, and some knowledge of
that product is assumed.

Related information
This document refers to the following information resources:
v DB2 XML Extender: Administration and Programming

v DB2 XML Extender: DB2 XML Extender Administration and Programming, Version
7.2 Release Notes

v Dynamic e-business: The next stage of e-business and Web services

v Apache Jakarta Tomcat documentation
v Simple Object Access Protocol (SOAP) 2.2 or later
v Universal Description, Discovery and Integration of Business for the Web
v Using WSDL in a UDDI Registry 1.07

v W3C XML Schema
v Web Services Description Language (WSDL) 1.1

v Web services zone

v WebSphere Application Server Advanced Edition Version 4 documentation
v WebSphere Handbook

v DB2 Developer Domain, Web Services (this is especially important for the most
recent version of this document)

© Copyright IBM Corp. 2002 v

http://www.ibm.com/software/data/db2/extenders/xmlext/library.html
http://www.ibm.com/software/data/db2/extenders/xmlext/library.html
http://www.ibm.com/software/data/db2/extenders/xmlext/library.html
http://www.ibm.com/software/solutions/webservices/
http://jakarta.apache.org/tomcat/
http://www.w3.org/TR/SOAP/
http://www.uddi.org/
http://www.uddi.org/bestpractices.html
http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/webservices/
http://www-4.ibm.com/software/webservers/appserv/infocenter.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246161.pdf
http://www.ibm.com/software/solutions/webservices/

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this document or the
WORF product, send your comments by e-mail to db2xml@us.ibm.com. Put
″WORF″ in the subject line and be sure to include the name of the book, the
version of DB2 XML Extender, and, if applicable, the specific location of the text
that you are commenting on (for example, a page number or table number).

vi Web Services Object Runtime Framework: Implementing DB2 Web Services

Chapter 1. Web services Object Runtime Framework

Web services are XML-based application functions that can be invoked over the
Internet. You can define a basic Web service by using standard SQL statements and
DB2 XML Extender stored procedures. For Web Services that involve advanced
transformations between XML and relational data, use the DB2 XML Extender.

Overview
WORF provides an environment to easily create simple XML based Web services
that access DB2. WORF uses Apache Simple Object Access Protocol (SOAP) 2.2 or
later and the Document Access Definition Extension (DADX). A DADX document
specifies a Web Service using a set of operations that are defined by SQL
statements or XML Extender Document Access Definition (DAD) documents. Web
services, or functions invoked over the Internet, specified in a DADX file are called
DADX Web services, also referred to as DB2 Web services.

You can create DADX documents by using a simple text editor, and tools provided
in WebSphere Studio with minimal knowledge of XML or SQL.

You can use DB2 XML Extender to implement Web services using Web services
Object Runtime Framework (WORF) tools with DB2. DB2 XML Extender consists
of a set of stored procedures, user-defined types (UDT) and user-defined functions
(UDF) that you can use to store and retrieve XML data using DB2. DB2 XML
Extender allows XML documents to be stored intact, and optionally indexed in
side tables, using the XML column access method, or as a collection of relational
tables using the XML collection access method. DB2 XML Extender uses an XML
document format called Document Access Definition (DAD) to define the mapping
between XML and relational data.

Features
WORF provides the following features:
v Resource–based deployment and invocation, or using DADX and, optionally,

other resources that help define the Web service
v Automatic service redeployment, at development time, when defining resource

changes
v HTTP GET and POST bindings, in addition to SOAP
v Automatic WSDL and XSD generation, including support for UDDI Best

Practices
v Automatic documentation and test page generation

WORF is currently available on Windows NT®, Windows® 2000, AIX®, Solaris, and
Linux.

WORF supports resource-based deployment of Web services. Resource-based
deployment means that you define your Web service in a resource file that you
place in a directory of your Web application. Then when you request that resource
file, WORF loads it and makes it available as a Web service. If you edit the
resource file and request it again, WORF detects the change and loads the new
version automatically. This process of automatically reloading the resource file
makes Web service development more productive.

© Copyright IBM Corp. 2002 1

WORF currently supports Web services defined with either SQL statements or
XML collection statements for the XML Extender. To define a Web service with
SQL statements, put the statements in a DADX resource file. The format of a
DADX file is described in detail in this document.

WORF is available from the DB2 XML Extender Web site, or with DB2 Universal
Database™ Version 8 and WebSphere Studio Version 4 and Version 5. When
delivered with WebSphere Studio, WORF is supported with a set of tools that
automate the building of DADX Web services. These tools include a wizard to
create DADX files based on SQL statements or DAD files, and tools to create DAD
files. WORF also works with Informix™.

Figure 1 shows how WORF processes a Web service request:
1. WORF receives an HTTP SOAP, GET or POST service request.

The URL of the Web service request includes the name of the Web service’s
resource file and a command. The command is either a built-in command or
specifies an operation of the Web service. The built-in commands include TEST,
WSDL, and XML schema files (XSD), in which case WORF generates either an
HTML test page, a WSDL document, or an XML schema file. If the request is a
SOAP request then the operation name is specified in the request body. See
“Example of POST request” on page 73 and “Example of SOAP request” on
page 74 for an example of a POST and SOAP request. Otherwise, the command
is the operation name. In either case, WORF invokes the specified operation of
the Web service and returns the result document. A DADX operation can also
contain input parameters. WORF performs the following steps in response to a
Web service request:
a. Loads the DADX file specified in the request.
b. Generates a response, based on the request:

v For operations:

WORF Architecture

DB2SOAP Service
Runtime

DADDADX

XML
Extender

Tables SPs

WORF
(DADX Processor)

SOAP Service
Request

JDBC

(Connection Pool)

Figure 1. WORF framework and XML Extender

2 Web Services Object Runtime Framework: Implementing DB2 Web Services

1) Loads a DAD file, if requested.
2) Replaces query parameters with requested values
3) Connects to DB2 and runs any SQL statements, including SQL calls.
4) Commits the database transaction.
5) Formats the result into XML, converting types as necessary.

v For commands: generates necessary files, test pages, or other responses
required.

c. Returns the response to the service requestor.

This model implies that you can only have one transaction per Web service
invocation. If you want multiple SQL operations in one transaction, write stored
procedures executing these statements and use those stored procedures as your
Web service operation.

The DADX file
A DADX file specifies how to create a Web service using a set of operations that
are defined by SQL statements (including stored procedure calls) and, optionally,
DAD files. These Web services store or retrieve XML documents managed by DB2
XML Extender. WORF provides the run-time support for invoking DADX
documents as Web services in the Apache SOAP 2.2 (or later) engine supported by
WebSphere Application Server and Apache Jakarta Tomcat.

In addition to specifying storage and retrieval operations on XML data, WORF
allows stored procedures and SQL statements to be exposed as invokable Web
service operations. You can expose any database stored procedure. WORF assumes
that your stored procedures have result sets with fixed metadata (a fixed number
and a fixed shape). The operation signature includes the input and output
parameters. You can also specify SQL statements to select, insert, update and delete
data. And, simple mapping of XML schema to SQL data types is provided. These
features do not require the XML Extender.

DADX files support two kinds of Web service operations:

XML collection operations (requires DB2 XML Extender)
These storage and retrieval operations help you to map XML document
structures to DB2 tables so that you can either compose XML documents
from existing DB2 data, or decompose (store untagged element or attribute
content) XML documents into DB2 data. This method is useful for data
interchange applications, particularly when the contents of XML
documents are frequently updated.

There are two elements that make up the XML collection operation type:

<retrieveXML>
generates XML documents

<storeXML>
stores XML documents

The DAD file provides fine-grained control over the mapping of XML
documents to a DB2 database for both storage and retrieval.

SQL operations
SQL-based querying is the ability to send SQL statements, including stored
procedure calls, to DB2 and to return results with a default tagging. The

Chapter 1. Web services Object Runtime Framework 3

data is returned using only a simple mapping of SQL data types, using
column names as elements. There are three elements that make up the SQL
operations type:

<query>
queries the database

<update>
inserts into a database, deletes from a database, or updates a
database

<call> calls stored procedures with multiple result sets

4 Web Services Object Runtime Framework: Implementing DB2 Web Services

Chapter 2. Installing and configuring WORF

The following sections describe how to set up WORF on the Web server. They
describe:
v “Software requirements for UNIX® and Windows”
v “Downloading and accessing WORF” on page 6
v “Configuring WORF for WebSphere Application Server on UNIX and Windows”

on page 6
v “Configuring WORF for Apache Jakarta Tomcat on UNIX and Windows” on

page 11

Software requirements for UNIX® and Windows
You set up WORF in any of the following operating systems:
v Windows NT
v Windows 2000
v Linux
v AIX
v Solaris

You can use the following database environments:
v IBM DB2 Universal Database Version 7.2, FixPak 7 or later

(http://www.ibm.com/software/data/db2)
– IBM DB2 XML Extender Version 7.2, FixPak 7 or later

(http://www.ibm.com/software/data/db2/extenders/xmlext/index.html)
Required for store and retrieve operations

v IBM DB2 Universal Database Version 8
(http://www.ibm.com/software/data/db2). This includes DB2 XML Extender.

v Informix Dynamic Server (IDS) Version 9.3

Additionally, use the following software:
v Java™ JDK Version 1.2 or 1.3 (http://java.sun.com, or

http://www.ibm.com/java)
v One of the following Web servers

– Websphere Application Server Advanced Edition Version 4.01 or Version 5,
Single or Extended Edition (http://www-
4.ibm.com/software/webservers/appserv/)
- Apache SOAP 2.2 or later binary, which is included with WebSphere Studio

(http://xml.apache.org/ (requires Document Object Model, level 2 (DOM
2), which is supported by Xerces Java 1.4.4 or later.))

– Apache Web server:
- Apache Jakarta Tomcat Version 3.3.1 through 4.0.3

(http://www.apache.org/)
v Apache Jakarta Tomcat Version 4 standard comes with the appropriate

Xerces
v For Apache Jakarta Tomcat versions earlier than Version 4, you must add

Xerces to your CLASSPATH to use it as the XML parser

© Copyright IBM Corp. 2002 5

http://www.ibm.com/software/data/db2
http://www.ibm.com/software/data/db2/extenders/xmlext/library.html
http://www.ibm.com/software/data/db2
http://java.sum.com
http://www.ibm.com/java
http://www-4.ibm.com/software/webservers/appserv/
http://www-4.ibm.com/software/webservers/appserv/
http://xml.apache.org/
http://www.apache.org/

- SOAP 2.2 or later binary (http://xml.apache.org/ (requires Document
Object Model, level 2 (DOM 2), which is supported by Xerces Java 1.4.4 or
later.))

- Xerces Java parser Version 1.4.4 (http://xml.apache.org/)
- JavaMail Version 1.2 (http://java.sun.com/)
- JavaBeans™ Activation Framework Version 1.0.1 (http://java.sun.com/).

This is required by Apache SOAP.

Downloading and accessing WORF
For DB2 Universal Database Version 7.2 FixPak 7, you can download the Web
Object Runtime Framework (WORF) from the DB2 Developer Domain,
http://www.ibm.com/software/data/developer.

WORF also comes with DB2 Universal Database Extended Server Edition, Version
8. WORF is found in the following path in DB2 UDB Version 8:
sqllib\samples\java\Websphere\dxxworf.zip.

Configuring WORF for WebSphere Application Server on UNIX and
Windows

You can run DB2 Web services on WebSphere Application Server (WAS) Advanced
Edition. WORF provides the run-time support for invoking DADX documents as
Web services over HTTP with Apache SOAP 2.2 (or later), which is supported by
WebSphere Application Server 4.0.1 or higher and other servlet engines. WebSphere
lets you secure your SOAP Web services. See the WebSphere documentation on
securing SOAP services for more information. The following sections describe:
v “Installing the software requirements”
v “Installing WORF on WAS Version 4.01 or Version 5.0” on page 7
v “Using connection pooling to improve performance” on page 10
v “Troubleshooting” on page 10

Installing the software requirements
Ensure that you have the required software installed. See “Software requirements
for UNIX® and Windows” on page 5 to verify your installation. The DB2 XML
Extender is required for advanced mapping control between XML and relational
data. Verify the installation by creating the DB2 SAMPLE database. WORF requires
JDBC 2.0, which is the default in DB2 Universal Database Version 8. The
procedures to prepare the WORF environment are as follows:
1. Stop any services that use DB2 (such as Web Application Server)
2. Stop DB2.
3. For DB2 Universal Database versions earlier than Version 8, select JDBC 2.0 by

running the C:\SQLLIB\java12\usejdbc2.bat file, assuming that you installed
DB2 in C:\SQLLIB\ using a Windows environment.

4. Restart DB2.
5. Start WebSphere Application Server Advanced Edition 4.01 or 5.0 (WAS). For

the rest of this document it is assumed that you installed WAS in
C:\WebSphere\Appserver.

6. Install Apache SOAP 2.2 or later.
a. Download, and unzip the soap-bin-2.2.zip file.

6 Web Services Object Runtime Framework: Implementing DB2 Web Services

http://xml.apache.org/
http://xml.apache.org/
http://java.sum.com
http://java.sum.com

b. WebSphere Application Server Version 4.01 or later comes with soap.jar in
WebSphere\AppServer\lib directory. Verify that you have soap.jar in directory
WebSphere\AppServer\lib\. If not, copy the extracted file
soap-2_2\lib\soap.jar into WebSphere\AppServer\lib\soap.jar.

Installing WORF on WAS Version 4.01 or Version 5.0
To install WORF, complete the following steps:
1. Download and unzip dxxworf.zip to a directory, such as C:\worf. The directory

has the following contents:
v readme.html
v lib\services.war - sample Web application containing Web services that use

WORF
v lib\worf.jar - WORF library which must be installed on the CLASSPATH of

the servlet engine
v schemas\ - XML schemas for the DADX and NST XML files
v tools\

2. Copy worf.jar to C:\WebSphere\AppServer\lib.
3. Start the Websphere Adminstration Server.

To install the WORF examples, complete the following steps:
1. Open the Administrator’s console and install services.war as an enterprise

application. You can use the Wizard menu to configure your application.
2. Give the Web application a context name of your choice. For example,

services. The Wizard also asks you to select a virtual host (for example:
default_host) and select an application server (for example: Default Server).
You can leave the defaults on the remaining pages of the wizard to complete
the installation. Figure 2 on page 8 shows the WAS Administrator’s Console
during the installation of the application:

Chapter 2. Installing and configuring WORF 7

3. Start the application server containing the services Web application
4. Verify that the database settings are correct (especially user ID and password)

in the group.properties files.
5. Test the installation by opening your browser on the services Web application

welcome page. The specific port number varies according to the WAS
configuration. If you have used the defaults, the services Web application
welcome page might be http://localhost:9080/services. The page should
look like the screen shown in Figure 3 on page 9:

Figure 2. Specifying the application or module

8 Web Services Object Runtime Framework: Implementing DB2 Web Services

6. Click on some of the TEST links to see if the sample services work. To learn
more about the Web services Sample Page, see “Testing the Web service” on
page 49.

7. Run setup.cmd in a Windows environment, or setup.sh in a UNIX environment
in each of the database directories to create the database. For example, in the
dxx_sales_db directory to set up the SALES_DB database using DB2 XML
Extender.
Now you should be able to use all the TEST links in the SALES_DB Database
Samples.

8. You can use either the Apache configuration manager (the default) or the IBM
configuration manager (XMLDrivenConfigManager). The IBM configuration
manager disables the automatic deployment of Web services when adding new
DADX files, so you have to deploy them manually (see “Generating
deployment descriptors” on page 47). WORF provides a configuration file for
deploying in the services.war file. If you want to use the IBM configuration
manager, rename soap-ibm.xml to soap.xml and dds-example.xml to dds.xml.
The dds-example.xml is a deployment descriptor file for all the DADX files in
the examples. Restart the application server to use the

Figure 3. Web services sample page

Chapter 2. Installing and configuring WORF 9

XMLDrivenConfigManager, in the
installedApps\servicesApp.ear\services.war subdirectory.
The Web application is configured to use the default ConfigManager, which
stores the deployed services in a serialized Java file named
DeployedServices.ds. The XMLDrivenConfigManager uses an XML format
instead. A sample dds.xml file that deploys a few services is included. If you
invoke a service that is not deployed the server will report that the service is
unknown.

Using connection pooling to improve performance
Connection pooling can help improve performance. This step is optional.

You can read more about this topic in the redbook, WebSphere Handbook Chapter 10.
1. Create a data source; you can use the Create Data Source Wizard from the

Administrative Console, as shown in Figure 4:

2. On the Specifying DataSource Resources window, specify the name,
description and database name of the data source, and choose a JDBC provider.

3. Edit the group.properties file in the groups subdirectory and add the
following lines of text:
initialContextFactory=<your context factory>
datasourceJNDI=<your DataSource>

For example:
initialContextFactory=com.ibm.ejs.ns.jndi.CNInitialContextFactory
datasourceJNDI=jdbc\salesDataSource

4. Restart the Web application if you have made any changes to the
group.properties file so they will take effect. See “Defining the web.xml and
group.properties files” on page 23 for more information on group.properties.

Troubleshooting
Table 1 on page 11 describes problems that can occur when you use WORF on WAS
4.0. Recommended solutions are provided.

Figure 4. Specifying datasource resources

10 Web Services Object Runtime Framework: Implementing DB2 Web Services

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246161.pdf

Table 1. Errors and solutions

Problem Solution

Error 500: Server caught
unhandled exception from
servlet [isd_demos]:
org.apache.soap.rpc.
SOAPContext: method
setClassLoader
(java\lang\ClassLoader;) not
found

SOAP 2.2 or later (soap.jar) is missing. See item 6 on
page 6 on how to install SOAP 2.2 or later in WAS.

Clicking on the Invoke button
from the Web services test page
in Internet Explorer results in a
’The page cannot be found’
error.

To view a more helpful error message use Netscape to
debug the problem. Or, edit the Internet Explorer
environment by doing the following steps:

1. Open the Tools menu from the Internet Explorer
menu bar.

2. Select Internet Options from the menu to open the
Internet Options window.

3. Click on the Advanced tab.

4. Clear the check box next to Show friendly HTTP
error messages

Error 400: service
’http://tempuri.org
/***/***.dadx’ unknown

You have to generate a deployment descriptor from the
DADX file and restart your Web application before
invoking the service (see “Generating deployment
descriptors” on page 47).

Configuring WORF for Apache Jakarta Tomcat on UNIX and Windows
You can run DB2 Web services on Apache Jakarta Tomcat. The following sections
describe:
v “Installing the software requirements”
v “Installing WORF on Apache Jakarta Tomcat” on page 12

Installing the software requirements
Ensure that you have the required software installed. See “Software requirements
for UNIX® and Windows” on page 5 to verify your installation. The DB2 XML
Extender is required for advanced mapping control between XML and relational
data. The DB2 XML Extender is required for advanced mapping control between
XML and relational data. Verify the installation by creating the DB2 SAMPLE
database. WORF requires JDBC 2.0, which is the default in DB2 Universal Database
Version 8. The procedures to prepare the WORF environment are as follows:
1. Stop DB2.
2. If you are not running DB2 Universal Database Version 8, select JDBC 2.0 by

running C:\SQLLIB\java12\usejdbc2.bat, assuming that you installed DB2 in
C:\SQLLIB\ in a Windows environment.

3. Restart DB2
4. Install the following Internet software:

v From Apache:
– Apache Jakarta Tomcat Version 4.0.3 or earlier binary from

http://jakarta.apache.org/site/binindex.html. (Apache Jakarta Tomcat
Version 4 standard comes with the appropriate Xerces; for earlier versions
you must add Xerces to your CLASSPATH to use it as the XML parser.)

Chapter 2. Installing and configuring WORF 11

http://jakarta.apache.org/site/binindex.html

– SOAP 2.2 or later binary from http://xml.apache.org/soap
– Xerces 1.4.4 from http://xml.apache.org/

v From Sun (http://java.sun.com/products):
– JavaMail 1.2
– JavaBeans Activation Framework (JAF) 1.0 1

Installing WORF on Apache Jakarta Tomcat
To install WORF on Apache Jakarta Tomcat,
v Add the following jar files to the classpath: soap.jar, xerces.jar, mail.jar,

activation.jar, and worf.jar. On the Windows platform, add those files to
the:setClasspath section of the tomcat\bin\tomcat.bat file.
With Apache Jakarta Tomcat version 3.2.4 or earlier, add the following bold lines
to the tomcat\bin\tomcat.bat file:

Note: Replace each%MYPATH% by the path to the jar file mentioned and
C:\SQLLIB\java\db2java.zip by your own db2-jdbc driver path. Assume
DB2 is installed in C:\SQLLIB.

.... rem ----- Set Up The run-time Classpath --------------------------------------
:setClasspath set CP=%TOMCAT_HOME%\classes
rem --- WORF set up (To add)
set CP=%CP%;%MYPATH%\soap.jar
set CP=%CP%;%MYPATH%\xerces.jar
set CP=%CP%;%MYPATH%\mail.jar
set CP=%CP%;%MYPATH%\activation.jar
set CP=%CP%;%MYPATH%\worf.jar
set CP=%CP%;C:\SQLLIB\java\db2java.zip
rem --- End WORF set up

With Apache Jakarta Tomcat version 3.3.1,
1. Add the following bold lines to the tomcat\bin\tomcat.bat file:

Note: Replace C:\SQLLIB\java\db2java.zip by your own db2-jdbc driver
path. Here DB2 is installed in C:\SQLLIB.

:setClasspath

set CLASSPATH=%TOMCAT_INSTALL%\lib\tomcat.jar

rem --- WORF set up (To add)
set CLASSPATH=%CLASSPATH%;C:\SQLLIB\java\db2java.zip
set CLASSPATH=%CLASSPATH%;D:\WebServices\xerces-1_4_4\xerces.jar
rem --- End WORF set up
...

2. Put all the installation jar files (soap.jar, activation.jar, mail.jar, worf.jar,
xerces.jar) in the tomcat\webapps\services\WEB-INF\lib directory.

Note: This directory does not exist until you install services.war and start
Apache Jakarta Tomcat. Apache Jakarta Tomcat automatically unzips
the services.war file and creates this directory.

With Apache Jakarta Tomcat version 4.0.3,
1. Add the following bold lines to the tomcat\bin\setclasspath.bat file:

Note: Replace C:\SQLLIB\java\db2java.zip by your own db2-jdbc driver
path. Here DB2 is installed in C:\SQLLIB.

12 Web Services Object Runtime Framework: Implementing DB2 Web Services

http://xml.apache.org/soap
http://xml.apache.org/
http://java.sun.com/products

....
rem Set standard CLASSPATH
rem Note that there are no quotes as we do not want to introduce random
rem quotes into the CLASSPATH
set CLASSPATH=%JAVA_HOME%\lib\tools.jar

rem --- Start WORF set up
set CLASSPATH=%CLASSPATH%;C:\SQLLIB\java\db2java.zip
rem --- End WORF set up....

2. Put all the installation jar files (soap.jar, activation.jar, mail.jar, worf.jar,
xerces.jar) in the tomcat\webapps\services\WEB-INF\lib directory.

To install the WORF examples, do the following,
1. Copy the services.war into your tomcat\webapps directory.

If you already have a services.war file installed:
a. Stop Apache Jakarta Tomcat.
b. Delete the services subdirectory under webapps and all of its contents.

CAUTION:
Any of your previously deployed Web services will be lost with this
action, so make sure this is acceptable.

c. Restart Apache Jakarta Tomcat.
2. Stop and start Apache Jakarta Tomcat (unless you deleted the services

directory in the previous step).
The services context starts:
ContextManager: Adding context Ctx(\services)

3. Verify the installation by entering the following URL:
http://localhost:8080/services/

The specific port address might vary depending on your environment. You
should get a page that looks like Figure 3 on page 9. To learn more about the
Web services Sample Page, see “Testing the Web service” on page 49.

4. Verify that your database settings are correct, especially user ID and password,
in group.properties. Try the verification.dadx on your system (the dynamic test
page and the WSDL).

5. To display the XML document, use Internet Explorer Version 5 or a text editor.
6. List the deployed SOAP services in your services context in your system.

WORF automatically deploys the services, for each test you run. Click on the
SOAP administration link from the Web services Sample Page.

Chapter 2. Installing and configuring WORF 13

14 Web Services Object Runtime Framework: Implementing DB2 Web Services

Chapter 3. Creating a DB2 Web service with WORF

This chapter contains the following sections:
v “Scenario”
v “Overview of the process” on page 21
v “Defining a group of Web services” on page 22
v “Defining the Web service with the DADX file” on page 26

Scenario
This section provides an overview of WORF using the SAMPLE database that
comes with DB2. As a starting point, we assume that you have set up your
application server (see Chapter 2, “Installing and configuring WORF” on page 5 for
more details) and are now ready to create a Web service that accesses the SAMPLE
database. This scenario assumes that you installed the WORF samples as a Web
application named services and services is configured on your application server.

WORF supports the creation of Web services by using the DADX, which extends
the functions of the DAD file used by XML Extender. The DADX file contains
necessary information to create a Web service and can reference the DAD file. This
scenario will use a simple DADX file, called HelloSample.dadx:

To deploy the Web service defined in the DADX file, copy it to the application
server in the directory defined by the group db2sample in directory dxx_sample.

HelloSample.dadx defines a Web service with a single operation named
listDepartment, which lists the contents of the DEPARTMENT table. The child tag
<query> specifies the type of operation. See “The DADX file” on page 3 for an
explanation of the elements that comprise an operation type.

Testing the Web service
If you have added the HelloSample.dadx in the correct directory
(\WEB-INF\classes\groups\dxx_sample) and if you use the WAS configuration
manager that you deployed using the instructions at Using a configuration
manager on page 9, then you can test the new service. Access the following URL to
begin the test (remember that the your WebAppServer identifier depends on your
Web server configuration):
http://<your WebAppServer>/services/db2sample/HelloSample.dadx/TEST

<?xml version="1.0" encoding="UTF-8"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx">

<operation name="listDepartments">
<query>

<SQL_query>SELECT * FROM DEPARTMENT</SQL_query>
</query>

</operation>
</DADX>

Figure 5. Simple DADX file: HelloSample.dadx

© Copyright IBM Corp. 2002 15

When you type the address, you see the following automatically generated
documentation and test page:

To test the listDepartments operation:
1. Click the listDepartments link in the Methods frame.
2. Click the Invoke push button in the Inputs frame.

The XML result of the operation is displayed in the Result frame:

Figure 6. The WORF test page

16 Web Services Object Runtime Framework: Implementing DB2 Web Services

Accessing the Web service
The test page acts as a simple HTML client of the Web Service and uses the HTTP
POST binding. The Web Service can also be accessed using HTTP GET and SOAP
bindings. The listDepartments operation can be invoked by the HTTP GET and
POST bindings using the following URL (the localhost port number depends on
your own current machine configuration):
http://localhost:8080/services/db2sample/HelloSample.dadx/listDepartments

This WORF operation returns an XML response that you can save to a file.

Figure 7. Result of the query

Chapter 3. Creating a DB2 Web service with WORF 17

HTTP GET and POST bindings are generally the same as any other HTTP GET and
POST requests. For the HTTP GET binding, any input parameters to the operation
are added to the URL. But, for the HTTP POST binding, the parameters are sent in
the request body.

SOAP binding
The SOAP binding also uses HTTP POST but the operation name, input
parameters, and other information are sent as an XML request body.

Use the following URL to access the SOAP binding (remember that the your
WebAppServer identifier depends on your Web server configuration):
http://<your WebAppServer>/services/db2sample/HelloSample.dadx/SOAP

Note: Consider using the SOAP binding for Java and JavaScript clients. WebSphere
Studio has the functionality to generate Java Web service clients.

Web services definition language
Request a Web services Definition Language (WSDL) document for the service,
HelloSample.wsdl, with the following URL:
http://localhost:8080/services/db2sample/HelloSample.dadx/WSDL

<?xml version="1.0" ?>
<xsd1:listDepartmentsResponse

xmlns:xsd1="http://schemas.ibm.com/sample/department.dadx/XSD"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<return>
<xsd1:listDepartmentsResult
xmlns:xsd1="http://schemas.ibm.com/sample/department.dadx/XSD"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<listDepartmentsRow>
<DEPTNO>A00</DEPTNO>
<DEPTNAME>SPIFFY COMPUTER SERVICE DIV.</DEPTNAME>

</listDepartmentsRow>
<listDepartmentsRow>

<DEPTNO>B01</DEPTNO>
<DEPTNAME>PLANNING</DEPTNAME>

</listDepartmentsRow>
<listDepartmentsRow>

<DEPTNO>C01</DEPTNO>
<DEPTNAME>INFORMATION CENTER</DEPTNAME>

</listDepartmentsRow>
<listDepartmentsRow>

<DEPTNO>D01</DEPTNO>
<DEPTNAME>DEVELOPMENT CENTER</DEPTNAME>

</listDepartmentsRow>
...

<listDepartmentsRow>
<DEPTNO>E21</DEPTNO>
<DEPTNAME>SOFTWARE SUPPORT</DEPTNAME>

</listDepartmentsRow>
</xsd1:listDepartmentsResult>
</return>
</xsd1:listDepartmentsResponse>

Figure 8. XML response document

18 Web Services Object Runtime Framework: Implementing DB2 Web Services

WORF automatically generates the WSDL document, from DADX. Refer to the
WSDL documentation for information on SQL statements and Web services
response structure.

UDDI business registries
When you register a Web Service in a Universal Discovery, Description, and
Integration (UDDI) business registry, the recommended practice is to split the
WSDL document into a service instance document and a binding document. To
learn more about UDDI and best practices, see Using WSDL in a UDDI Registry
1.07.

The service instance document contains the address at which the service is
deployed and it imports the binding document. Many service instances might refer
to a common binding document. The binding document is registered in UDDI as a
reusable tModel. The tModel is the information about a specification for a Web
service.

Request the WSDL service instance document with the URL:
http://localhost:8080/services/db2sample/HelloSample.dadx/WSDLservice

Request the WSDL binding document with the URL:
http://localhost:8080/services/db2sample/HelloSample.dadx/WSDLbinding

XML schema definitions
The data types used in the Web service interface are defined using an XML
schema. Request the XML schema definitions for the service by the URL:
http://localhost:8080/services/db2sample/HelloSample.dadx/XSD

WORF generates an XML schema file similar to the following XML schema
example:

<?xml version="1.0" encoding="UTF-8"?>
<schema

targetNamespace="http://localhost:8080/services/sample/HelloSample.dadx/XSD"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://localhost:8080/services/sample/HelloSample.dadx/XSD">
<element name="listDepartmentsResult">

<complexType>
<sequence>

<element maxOccurs="unbounded" minOccurs="0" name="listDepartmentsRow">
<complexType>

<sequence>
<element name="DEPTNO" type="string"/>
<element name="DEPTNAME" type="string"/>
<element name="MGRNO" nillable="true" type="string"/>
<element name="ADMRDEPT" type="string"/>
<element name="LOCATION" nillable="true" type="string"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</element>

</schema>

Figure 9. The XML schema definition file

Chapter 3. Creating a DB2 Web service with WORF 19

http://www.uddi.org/bestpractices.html
http://www.uddi.org/bestpractices.html

The DB2 XML Extender can use DTDs to define the schema of XML documents, so
the WORF run-time automatically translates the DTD into an XML Schema. For
example, if an XML document is defined using the DTD order.dtd, then you can
use the following URL to request the translation into XML Schema:
http://localhost:8080/services/db2sample/order.dtd/XSD

Documentation
You can include documentation in the DADX for the service as a whole and for
each operation. HelloSample1.dadx illustrates how to add documentation:

The documentation can contain any valid XML. For proper display in a browser,
you should use XHTML. Now when you request the test page, the documentation
is included:

<?xml version="1.0" encoding="UTF-8"?>
<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:documentation>

Simple DADX example that accesses the SAMPLE database.
</wsdl:documentation> <operation name="listDepartments">

<wsdl:documentation>
Lists the departments.

</wsdl:documentation>
<query>

<SQL_query>SELECT * FROM DEPARTMENT</SQL_query>
</query>

</operation>
</DADX>

Figure 10. HelloSample1.dadx

20 Web Services Object Runtime Framework: Implementing DB2 Web Services

Automatic Reloading
During the course of development, you are likely to make frequent changes to
your DADX files. WORF allows you to make changes to your DADX files while
the application server is running, and automatically reloads the DADX file with
the new updates. Automatic reloading makes developing DADX Web services as
simple as developing Java Server Pages. You can turn off automatic reloading
when you deploy your DADX Web services to a production server. See also
information on group.properties in “Defining a group of Web services” on page 22.

Overview of the process
Overview of the process:
1. The database administrator sets up the databases.
2. The database administrator optionally enables the databases for DB2 XML

Extender. This is required when using the retrieveXML and storeXML

Figure 11. WORF test page with documentation

Chapter 3. Creating a DB2 Web service with WORF 21

operations or when using the XML column. See the administration chapters of
DB2 XML Extender: Administration and Programming to learn how to enable the
databases for XML Extender.

3. A Web application developer creates a Web application at the Web server. A
Web application is a folder on the server that is made up of a collection of
related files and tools. Web applications include the interfaces, program flow,
program logic, and data access information to create an infrastructure for doing
business over the Internet. See the following documentation to learn more:
v WebSphere Application Server Advanced Edition Version 4 documentation
v Apache Jakarta Tomcat documentation

4. Within the Web application, the Web application developer creates a database
connection configuration for each connection to a database. The connection
configuration is stored in the group.properties file, which is a file that contains
information about the database connection and other related information used
by WORF.

5. The database developer optionally creates the DAD to map XML and relational
data conversion (required when using XML Extender stored procedures.) See
DB2 XML Extender: Administration and Programming.

6. The Web service developer creates the DADX document, which defines a set of
operations and contains information used to create the Web service. See
“Defining the Web service with the DADX file” on page 26.

7. When using the WAS ConfigManager for Windows or UNIX, the Web service
developer creates and deploys a deployment descriptor for the Web service. A
deployment descriptor is an isd file, that identifies configuration and
deployment information. Each Web service has an *.isd file. All of the isd files
must be copied into the dds.xml file. (This step is automatic for Apache Jakarta
Tomcat users.)

8. The Web service developer verifies the Web service using the DADX test page.

Defining a group of Web services
The resources for all DADX Web service groups are stored in the groups directory
created when the WORF Web application was configured. On UNIX and Windows,
this directory is in the WEB-INF\classes\groups\ subdirectory of the Web
application’s base directory.

DADX files contain the implementation of the Web services and are therefore
similar to Java classes. The classes directory is part of the Java CLASSPATH for
the Web application. This means that your DADX files can be loaded by the Java
class loader and that your Web application can execute directly from its WAR file.

Within the groups directory, each group of DADX Web services is stored in a
directory with the same name as its servlet instance. For example, the DxxInvoker
servlet determines where to find DADX files by looking for a directory that
matches its servlet name. In our example, the DADX files are stored in the
WEB-INF\classes\groups\dxx_sample directory.

Before you begin
Ensure that the database administrator has set up any databases or subsystems
required for the application, and enables them for use by XML Extender (if XML
Extender is used). The following table is a partial list of some of the files to modify
if you use a directory other than c:\dxx, which is the default XML Extender install
directory.

22 Web Services Object Runtime Framework: Implementing DB2 Web Services

http://www.ibm.com/software/data/db2/extenders/xmlext/library.html
http://www-4.ibm.com/software/webservers/appserv/infocenter.html
http://jakarta.apache.org/tomcat/
http://www.ibm.com/software/data/db2/extenders/xmlext/library.html

Table 2. XML Extender samples reference the following DTDs

Platform Location of DTDs

DB2 Version 7.2 FixPak 7 or later
Windows

v c:\dxx\samples\dtd\getstart.dtd

v c:\dxx\dtd\dad.dtd.

DB2 Version 8 Windows v c:\program files\IBM
\SQLLIB\samples\db2xml\dtd\ getstart.dtd

v c:\program files\IBM
\SQLLIB\samples\db2xml\dtd\ dad.dtd

DB2 Version 8 on Solaris /opt/IBMdb2/V8.1/samples /db2xml/dtd/dad.dtd

DB2 Version 8 on AIX /usr/opt/db2_08_01/samples /db2xml/dtd/dad.dtd

DB2 Version 8 on Linux /usr/IBMdb2/V8.1/samples /db2xml/dtd/dad.dtd

Table 3. Some files referencing dad.dtd

department.dad getstart.xml

department2.dad order.dad

departmentStd.dad order-public.dad

sales_db.nst order-10.xml

Defining the web.xml and group.properties files
In order to define a new group of DADX Web services, complete the following
steps:
1. Choose a group name for the DADX group that reflects your application. For

these instructions, we will use the name myapp_group.
2.

v

For UNIX and Windows, in the WEB-INF directory, edit the web.xml file to
define the group name. You can have multiple group names in the same
web.xml file. The following figure shows an example of the web.xml file. The
elements that you need to configure are shown in bold with the values
defined below.

Chapter 3. Creating a DB2 Web service with WORF 23

Only one <servlet> element can exist for each group, but a group can have
multiple <servlet-mapping> elements. In this example, the <servlet-name>
element defines a group named myapp_group.

When updating the this file, you provide the information for the following
elements:

<servlet-name>
The name of the group. The servlet name must be a valid directory
name under the groups directory (discussed below), which is used to
store the DADX resources for this group of Web services. For
example: myapp_group. This element exists under both the <servlet>
and <servlet-mapping> elements.

<url-pattern>
The URL associated with the group. The <servlet-mapping> element
associates the dxx_sales_db servlet with URLs of the form
/url_pattern/*. The URL pattern must be of this form for WORF to
operate correctly. For example: /myapp/*

3. From the groups directory, create a subdirectory with the name of the group
specified in the <servlet-name> element added in the previous step. The
resources for this group will be stored in this subdirectory.

4. In the group directory, create a group.properties file, which defines the
database connection information and other common attributes for each group
of DADX Web services. The following is an example of what the
group.properties might look like for the new group:

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet>

<servlet-name>myapp_group</servlet-name>
<servlet-class>com.ibm.etools.

webservice.rt.dxx.servlet.DxxInvoker</servlet-class>
<init-param>

<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
<load-on-startup>-1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>myyapp_group</servlet-name>
<url-pattern>/myapp/*</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>index.html</welcome-file>
</welcome-file-list>
</web-app>

Figure 12. web.xml

24 Web Services Object Runtime Framework: Implementing DB2 Web Services

Customizing the group.properties file
The group.properties file is a standard Java properties file. The properties have
the following values:

groupNamespaceUri
Optional - defines the target namespace that is used in the generated
WSDL and XML schema files (XSD) for web services in this group.

initialContextFactory
Optional, but used with datasourceJNDI. Required for WebSphere
connection pooling. Specifies the Java class name of the JDNI initial context
factory that is used to locate the DataSource for the database. This property
enables connection pooling. See “Using connection pooling to improve
performance” on page 10 to learn how to set up connection pooling.

datasourceJNDI
Optional, but used with initialContextFactory. Required for WebSphere
connection pooling. Specifies the JNDI name of the DataSource for the
database. Used with initialContextFactory, defines a DataSource for the
database connection. This property enables connection pooling. See “Using
connection pooling to improve performance” on page 10 to learn how to
set up connection pooling. Either the DataSource or the JDBC connection
must be defined.

dbDriver
Optional. Specifies the Java class name of the JDBC driver for connecting
to the database. Either the DataSource or the JDBC connection must be
defined. If both are defined, then the DataSource is tried first. If WORF
cannot obtain the DataSource, then it tries the JDBC.

dbURL
Optional, but used with dbDriver. Specifies the JDBC URL of the database.

userID
Optional. The default is the user ID under which the WORF executes,
which can be the same user ID used for connecting to the database.
Specifies the user ID for the database.

password
Optional, but used with user ID. Specifies the password for the database.
Algorithms are available that can help you encode and decode your

myapp_group group properties
dbDriver=COM.ibm.db2.jdbc.app.DB2Driver
dbURL=jdbc:db2:sample
userID=
password=
namespaceTable=myapp.nst
autoReload=true
reloadIntervalSeconds=5

for Informix, use the following database driver and URL:
dbDriver=com.informix.jdbc.IfxDriver
dbURL=jdbc\:informix-sqli://::informixserver=

Figure 13. group.properties example

Chapter 3. Creating a DB2 Web service with WORF 25

password. See Appendix D, “Encoding algorithm” on page 87 for an
algorithm to handle password encoding.

namespaceTable
Optional. Specifies the resource name of the namespace table. References a
Namespace Table (NST) resource that defines the mapping from DB2 XML
Extender DTDIDs to XML Schema (XSD) namespaces and locations. See
Figure 23 on page 42 for an example of the NST file.

enableXmlClob
Optional. Specifies whether retrieveXML operations will use the
CLOB-based XML Extender stored procedures. The value of true is the
default. This option is included only for backward compatibility.

The next two options control resource loading and caching. If autoReload is absent
or false, then resource reloading is not done and reloadIntervalSeconds is ignored.
If autoReload is true, when WORF accesses a resource (such as one of the
following files: DAD, DADX, DTD, NST), it compares the current time with the
time at which the resource was previously loaded. If more than the value of
reloadIntervalSeconds has passed, then WORF checks the file system for a newer
version and reloads the changed resource. Automatic reloading is useful at
development time, in which case reloadIntervalSeconds can be set to 0. If the Web
services are in production, autoReload should either be set to false, or
reloadIntervalSeconds should be set to a large value to avoid impacting server
performance.

autoReload
Optional, but used with reloadIntervalSeconds. Specifies whether to
reload a resource. Values can be true or false. The default is false.

reloadIntervalSeconds
Optional, but used with autoReload. Controls resource loading and
caching. Specifies the integer automatic reloading time interval in seconds.
The default is 0, which means that WORF will check for a newer resource
on every request

Defining the Web service with the DADX file
The DADX file specifies a Web service using a set of operations that are defined by
SQL statements, a list of parameters, and, optionally, DAD file references.
Operations are similar to methods that you can invoke. The operations in a DADX
Web Service can be defined by the following operation types:
v XML collection operations (requires DB2 XML Extender)

– <retrieveXML> - generates XML documents
– <storeXML> - stores XML documents

v SQL Operations
– <query> - queries the database
– <update> - performs an update, insert or delete operation on the database
– <call> - calls stored procedures

Syntax of the DADX file
The DADX file is an XML document. The elements of the DADX are described
in“DADX syntax definitions” on page 27 and in Figure 14 on page 27. The DADX
schema is provided in Appendix B, “XML schema for the DADX file” on page 63.
The numbers next to the nodes and elements in “DADX syntax definitions” on
page 27 identify the child groupings. An element numbered 1.3.1 means that it is

26 Web Services Object Runtime Framework: Implementing DB2 Web Services

the first child (column) of the third child (result_set_metadata) of the root element
(DADX).

1. Root element: <DADX>
Attributes:

xmlns:dadx
The namespace of the DADX.

Figure 14. DADX syntax

Chapter 3. Creating a DB2 Web service with WORF 27

xmlns:xsd
The namespace of the W3C XML Schema specification

xmlns:wsdl
The namespace of the W3C Web Services Definition Language
specification

Children:

1.1 <wsdl:documentation>
Specifies a comment or statement about the purpose and content of
the Web service. You can use XHTML tags.

1.2 <implements>
Specifies the namespace and location of the Web service
description files. It allows the service implementor to declare that
the DADX Web service implements a standard Web service
described by a reusable WSDL document defined elsewhere; for
example, in a UDDI registry.

1.3 <result_set_metadata>
Stored procedures can return one or more result sets which can be
included in the output message. Metadata for a stored procedure
result set must be defined explicitly in the DADX using the
<result_set_metadata> element. At run-time, the metadata of the
result set is obtained and it must match the definition contained in
the DADX file.

Note: Therefore, only stored procedures that have result sets with
fixed metadata can be invoked.

This restriction is necessary in order to have a well-defined WSDL
file for the Web Service. A single result set metadata definition can
be referenced by several <call> operations, using the <result_set>
element. The result set metadata definitions are global to the
DADX and must precede all of the operation definition elements.

Attributes:

name Identifies the root element for the result set.

rowname
Used as the element name for each row of the result set.

Children:

1.3.1 <column>
Defines the column. The order of the columns must match
that of the result set returned by the stored procedure.
Each column has a name, type, and nullability, which must
match the result set.

Attributes:

name Required. Specifies the name of the column.

type Required if element is not specified. Specifies the
type of column.

element
Required if type is not specified. Specifies the
element of column.

28 Web Services Object Runtime Framework: Implementing DB2 Web Services

as Optional. Provides a name for a column.

nullable
Optional. Nullable is either true or false. It
indicates whether column values can be null.

1.4 <operation>
Specifies a Web service operation. The operation element and its
children specify the name of an operation, and the type of
operation the Web service will perform, such as compose an XML
document, query the database, or call a stored procedure. A single
DADX file can contain multiple operations on a single database or
location. The following list describes these elements.
v Attribute:

name A unique string that identifies the operation; the string
must be unique within the DADX file. For example:
"findByColorAndMinPrice"

v Children:
Document the operation with the following element:

1.4.1 <wsdl:documentation>
Specifies a comment or statement about the purpose and
content of the operation. You can use XHTML tags.

Specify the type of operation using one of the following child
elements:

1.4.2 <retrieveXML>

Specifies to generate zero or one XML documents from a
set of relational tables using the XML collection access
method. Depending on whether a DAD file or an XML
collection name is specified, the operation will call the
appropriate XML Extender composition stored procedure

Children:
– Specify which of these stored procedures is used by

passing either the name of a DAD file, or the name of
the collection using one of the following elements:

1.4.2.1 <DAD_ref>
The content of this element is the name and
path of a DAD file. If a relative path is
specified for the DAD file, the current
working directory is assumed to be the group
directory.

1.4.2.2 <collection_name>
The content of this element is the name of the
XML collection. Collections are defined using
the XML Extender administration interfaces,
as described in DB2 XML Extender
Administration and Programming.

– Specify override values with one of the following
elements:

1.4.2.3 <no_override/>
Specifies that the values in the DAD file are

Chapter 3. Creating a DB2 Web service with WORF 29

not overridden. Required if neither
<SQL_override> nor <XML_override> are
specified.

1.4.2.4 <SQL_override>
Specifies to override the SQL statement in a
DAD file that uses SQL mapping.

1.4.2.5 <XML_override>
Specifies to override the XML conditions in a
DAD file that uses RDB mapping.

– Define parameters using the following element:

1.4.2.6 <parameter>
Required when referencing a parameter in an
<SQL_override> or an <XML_override>
element. Specifies a parameter for an
operation. Use a separate parameter element
for each parameter referenced in the
operation. Each parameter name must be
unique within the operation.

Attributes:

name The unique name of the parameter.
A parameter must have its contents defined
by either an XML Schema element (a complex
type) or a simple type.

element
Use the "element" attribute to specify
an XML Schema element.

type Use the "type" attribute to specify a
simple type.

kind Specifies whether a parameter passes
input data, returns output data, or
does both. The valid values for this
attribute are:
- in

1.4.3 <storeXML>

Specifies to store (decompose) an XML document in a set
of relational tables using the XML collection access
method. Depending on whether a DAD file or an XML
collection name is specified, the operation will call the
appropriate XML Extender decomposition stored
procedure. Children:
– Specify which of these stored procedures is used by

passing either the name of a DAD file, or the name of
the collection using one of the following elements:

1.4.3.1 <DAD_ref>
The content of this element is the name and
path of a DAD file. If a relative path is
specified for the DAD file, the current
working directory is assumed to be the group
directory.

30 Web Services Object Runtime Framework: Implementing DB2 Web Services

1.4.3.2 <collection_name>
The content of this element is the name of an
XML collection. Collections are defined using
the XML Extender administration interfaces,
as described in DB2 XML Extender
Administration and Programming.

1.4.4 <query>
Specifies a query operation. The operation is defined by
an SQL SELECT statement in the <SQL_select> element.
The statement can have zero or more named input
parameters. If the statement has input parameters then
each parameter is described by a <parameter> element.

This operation maps each database column from the
result set to a corresponding XML element. You can
specify XML Extender user-defined types (UDTs) in the
<query> operation, however this requires an
<XML_result> element and a supporting DTD that
defines the type of the XML column queried.

Children:

1.4.4.1 <SQL_query>
Specifies an SQL SELECT statement.

1.4.4.2 <XML_result>
Optional. Defines a named column that contains
XML documents. The document type must be
defined by the XML Schema element of its root.

Attributes:

name Specifies the root element of the XML
document stored in the column.

element
Specifies the particular element within
the column

1.4.4.3 <parameter>
Required when referencing a parameter in the
<SQL_query> element. Specifies a parameter for
an operation. Use a separate parameter element
for each parameter referenced in the operation.
Each parameter name must be unique within the
operation.

Attributes:

name The unique name of the parameter.
A parameter must have its contents defined by
one of the following: an XML Schema element (a
complex type) or a simple type.

element
Use the "element" attribute to specify an
XML Schema element.

type Use the "type" attribute to specify a
simple type.

kind Specifies whether a parameter passes

Chapter 3. Creating a DB2 Web service with WORF 31

input data, returns output data, or does
both. The valid values for this attribute
are:
– in

1.4.5 <update>
The operation is defined by an SQL INSERT, DELETE, or
UPDATE statement in the <SQL_update> element. The
statement can have zero or more named input
parameters. If the statement has input parameters then
each parameter is described by a <parameter> element.

Children:

1.4.5.1 <SQL_update>
Specifies an SQL INSERT, UPDATE, or DELETE
statement.

1.4.5.2 <parameter>
Required when referencing a parameter in the
<SQL_update> element. Specifies a parameter
for an operation. Use a separate parameter
element for each parameter referenced in the
operation. Each parameter name must be unique
with the operation.

Attributes:

name The unique name of the parameter.
A parameter must have its contents defined by
one of the following: an XML Schema element (a
complex type) or a simple type.

element
Use the "element" attribute to specify an
XML Schema element.

type Use the "type" attribute to specify a
simple type.

kind Specifies whether a parameter passes
input data, returns output data, or does
both. The valid values for this attribute
are:
– in

1.4.6 <call>
Specifies a call to a stored procedure. The processing is
similar to the update operation, but the parameters for
the call operation can be defined as ’in’, ’out’, or
’in/out’. The default parameter kind is ’in’. The ’out’
and ’in/out’ parameters appear in the output message.

1.4.6.1 <SQL_call>
Specifies a stored procedure call.

1.4.6.2 <parameter>
Required when referencing a parameter in an
<SQL_call> element. Specifies a parameter for an
operation. Use a separate parameter element for

32 Web Services Object Runtime Framework: Implementing DB2 Web Services

each parameter referenced in the operation. Each
parameter name must be unique within the
operation.

Attributes:

name The unique name of the parameter.
A parameter must have its contents defined by
one of the following: an XML Schema element (a
complex type) or a simple type.

element
Use the ″element″ attribute to specify an
XML Schema element.

type Use the ″type″ attribute to specify a
simple type.

kind Specifies whether a parameter passes
input data, returns output data, or does
both. The valid values for this attribute
are:
– in
– out
– in/out

1.4.6.3 <result_set>
Defines a result set and must follow any
<parameter> elements. The result set element
has a name which must be unique among all the
parameters and result sets of the operation, and
must refer to a <result_set_metadata> element.
One <result_set> element must be defined for
each result set returned from the stored
procedure.

Attributes:

name A unique identifier for the result sets in
the SOAP response.

metadata
A result set meta data definition in the
DADX file. The identifier must refer to
the name of an element.

A simple DADX
This DADX contains one operation with an SQL query.

Figure 15 on page 34 shows a DADX file that defines a simple Web service:

Chapter 3. Creating a DB2 Web service with WORF 33

This simple DADX file defines a Web Service with a single operation named
listDepartments which lists the contents of the DEPARTMENT table. The
operation name identifies the Web service activity, and is similar to a method name
in programming languages.

XML collection operations
You can generate or store XML documents with the <retrieveXML> or <storeXML>
operations. These operations call XML Extender stored procedures and require a
DAD file or an XML collection reference. These stored procedures generate or store
XML documents using the mapping in a DAD file, or by referring to an enabled
XML collection. See DB2 XML Extender: Administration and Programming to learn
how to create a DAD file.

The following example shows a more complex DADX file that generates an XML
document from a DAD file. It references a stored procedure using the
<RetrieveXML> element. The <DAD_ref> element specifies the name of a DAD
file.

<?xml version="1.0" encoding="UTF-8"?>
<DADX

xmlns="http://schemas.ibm.com/db2/dxx/dadx"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:documentation>

Simple DADX example that accesses the SAMPLE database.
</wsdl:documentation>
<operation name="listDepartments">

<wsdl:documentation>
Lists the departments.

</wsdl:documentation>
<query>

<SQL_query>SELECT * FROM DEPARTMENT</SQL_query>
</query>

</operation>
</DADX>

Figure 15. Simple DADX file

34 Web Services Object Runtime Framework: Implementing DB2 Web Services

The Web service generated from this DADX file calls the dxxGenXML stored
procedure and generates XML documents. The stored procedure refers to the
getstart_xcollection.dad file to determine which tables to use when generating
the XML documents, and the XML document structure.

Using overrides in the DADX
The DADX file can override XML values and SQL statements in DAD file using
the <XML_override> and <SQL_override> elements. The type of override is
determined by whether the DAD file uses SQL mapping or RDB mapping. If you
do not need to override the DAD values, use the <no_override/> element, as
shown in Figure 16.

The following example, which builds on the previous example, uses an SQL
override statement.

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://www.w3.org/1999/xhtml">
Provides queries for part order information at myco.com.
See
PartOrders.html
for more information.
</wsdl:documentation>
<operation name="findAll">

<wsdl:documentation xmlns="http://schemas.xmlsoap.org/wsdl/">
Returns all the orders with their complete details.

</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<no_override/>

</retrieveXML>
</operation>
</DADX>

Figure 16. DADX files that generates an XML document

Chapter 3. Creating a DB2 Web service with WORF 35

Although the SQL statement can be overridden, the new SQL statement must
produce a result set that is compatible with the SQL mapping defined in the DAD
file. For example, the column names that appear in the DAD file must also appear
in the SQL override.

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://www.w3.org/1999/xhtml">
Provides queries for part order information at myco.com.
See

PartOrders.html for more information.
</wsdl:documentation>
<operation name="findAll">

<wsdl:documentation xmlns="http://schemas.xmlsoap.org/wsdl/">
Returns all the orders with their complete details.

</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad
</DAD_ref>

<SQL_override>
select o.order_key, customer_name, customer_email,
p.part_key, color, quantity, price, tax, ship_id, date, mode
from order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16)
as ship_id, date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
order by order_key, part_key, ship_id

</SQL_override>
</retrieveXML>
</operation>

</DADX>

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://www.w3.org/1999/xhtml">
Provides queries for part order information at myco.com.
See

PartOrders.html for more information.
</wsdl:documentation>
<operation name="findAll">

<wsdl:documentation xmlns="http://schemas.xmlsoap.org/wsdl/">
Returns all the orders with their complete details.

</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>

select o.order_key, customer_name, customer_email,
p.part_key, color, quantity, price, tax, ship_id, date, mode
from order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16)
as ship_id, date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
order by order_key, part_key, ship_id

</SQL_override>
</retrieveXML>
</operation>

</DADX>

Figure 17. DADX file that generates an XML document with SQL override

36 Web Services Object Runtime Framework: Implementing DB2 Web Services

If the DAD file uses RDB node mapping, the RDB nodes have to be overridden
using the <XML_override> element. RDB node elements define DB2 tables,
columns, and conditions that are to contain XML data. The following example
shows a DADX file that references an RDB node DAD file. The <XML_override>
element content overrides the conditions specified in the DAD file. The override
string can contain input parameters using the host variable syntax. The name and
type of all parameters must be defined in a list of parameter elements that are
uniquely named within this operation. In this example, the override parameter
overrides the query by limiting the price to be greater than $50.00 and restricting
the date to be greater than 1998-12-01.

Declaring and referencing parameters in the DADX
You can use parameters in each of the operations. The <SQL_query>,
<SQL_update>, and <SQL_call> statements for the SQL operations can reference
parameters, as can the XML and SQL overrides used in the <retrieveXML> and
<storeXML> operations. The parameters are declared using the <parameter>
element and have simple XML Schema types that correspond to the built-in SQL
data types. The supported types are described in Table 4.

Table 4. Supported XML Schema and SQL types

XML Schema Simple Type SQL Type

string CHAR, VARCHAR

decimal DECIMAL, NUMERIC

int INTEGER

short SMALLINT

float FLOAT

double REAL, DOUBLE PRECISION,

date DATE

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://www.w3.org/1999/xhtml">
Provides queries for part order information at myco.com.
See

PartOrders.html for more information.
</wsdl:documentation>
<operation name="findByExtendedPriceAndShipDate">

<wsdl:documentation xmlns="http://schemas.xmlsoap.org/wsdl/">
Returns all the orders with an extended price greater than $50.00
and a ship date later than 1998-12-01.

</wsdl:documentation>
<retrieveXML>

<DAD_ref>order_rdb.dad</DAD_ref>
<XML_override>

/Order/Part/ExtendedPrice > 50.00 AND
Order/Part/Shipment/ShipDate > ’1998-12-01’

</XML_override>
</retrieveXML>

</operation>

</DADX>

Figure 18. DADX file that generates an XML document with XML override

Chapter 3. Creating a DB2 Web service with WORF 37

Table 4. Supported XML Schema and SQL types (continued)

XML Schema Simple Type SQL Type

time TIME

timestamp TIMESTAMP

To reference a parameter, use a colon prefix. For example:
<SQL_query>
select * from order_tab where customer_name =:customer_name
</SQL_query>

To define the parameter, use the <parameter> element: For example:
<parameter name="customer_name" type="xsd:string"/>

Each parameter that you reference must be defined with a <parameter> element.
The name attribute for this element identifies the parameter and must be unique
within the operation.

The following example shows a query operation that retrieves a set of relational
data using an SQL SELECT statement. The statement contains one input parameter
using the parameter syntax.

The next example shows parameters in an SQL override used by a retrieveXML
operation:

<operation name="findCustomerOrders">
<wsdl:documentation>Returns all the orders for a given customer.
</wsdl:documentation>
<query>

<SQL_query>select * from order_tab where customer_name =
:customer_name</SQL_query>

<parameter name="customer_name" type="xsd:string"/>
</query>

</operation>

Figure 19. Query operation with a parameter

38 Web Services Object Runtime Framework: Implementing DB2 Web Services

The WHERE clause of the SQL statement is modified to include search conditions.
The SQL override can include one or more parameters, identified by using a colon.
In this example, findByColorAndMinPrice references :color and :minprice. The
parameters are declared with a <parameter> element and have simple XML
schema file (XSD) types that correspond to the built-in SQL data types.

DADX operation examples
The following samples show DADX files with the various operations.

Example1: Query operation

This example shows a Query operation, using the default tagging, and can
be used without XML Extender. This operation selects all of the orders for
a given customer. To run this sample, you need the sales_db XML Extender
sample database.

<operation name="findByColorAndMinPrice">
<wsdl:documentation>Returns all the orders that have the specified color and

at least the specified minimum price.
</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad
</DAD_ref>

<SQL_override>
select o.order_key, customer_name, customer_email,

p.part_key, color, quantity, price, tax, ship_id, date, mode
from order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16)
as ship_id, date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
and color = :color and price >= :minprice

order by order_key, part_key, ship_id
</SQL_override>
<parameter name="color" type="xsd:string">
<parameter name="minprice" type="xsd:decimal">

</retrieveXML>
</operation>

Figure 20. SQL override used by a retrieveXML operation

Chapter 3. Creating a DB2 Web service with WORF 39

The input parameters must be defined by a list of parameter elements that
are uniquely named within this operation. If more control over the
mapping is required, then you can use a DAD file.

You can use Query operation to use the XML Extender user-defined types
(UDT) and user-defined functions (UDF), which allow you to query,
extract, and update data from an XML column that contains XML
documents. These XML documents require that you create a DTD that
defines the type of the <XML_result> element. This element specifies the
name of the column and the root element of the XML document contained
in it.

The following example shows a Query operation that uses the VARCHAR
UDT declared by the <XML_result> element. The retrieveOrders
operation retrieves all the XML order documents from the SALES_TAB
table using the UDF db2xml.varchar. The documents are stored using the
XML Extender UDT XMLVARCHAR:

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://www.w3.org/1999/xhtml">
mycompany part orders service.

</wsdl:documentation>
<implements namespace="http://www.poia.org/part_orders.wsdl"

location="http://www.poia.org/part_orders.wsdl"/>
<operation name="findCustomerOrders">

<wsdl:documentation>Returns all the orders for a given customer.
</wsdl:documentation>
<query>

<SQL_query>select * from order_tab
where customer_name = :customer_name

</SQL_query>
<parameter name="customer_name" type="xsd:string"/>

</query>
</operation>

Figure 21. DADX with Query operation

40 Web Services Object Runtime Framework: Implementing DB2 Web Services

When you have XML documents in a column and you want the WSDL to
refer to the type of this document, you can use the XML_result tag. In this
example we specify that the ORDER column contains fragments of element
dtd1:Order. The line
<XML_result name=″ORDER″ element=″dtd1:Order″/> refers to the
namespace declaration. XML Extender stores XML documents that have no
namespaces and that are defined by DTDs. Web services use XML Schemas
(XSD) instead of DTDs, and make use of namespaces. You associate a
namespace with a DTD by making an entry in the namespace table. WORF
adds the namespace when it retrieves an XML document and removes the
namespace when it stores a document. WORF also automatically translates
DTDs to XSD. The above line defines column information in file order.dtd.
The specific declaration that it refers to is in the following example:
<?xml encoding="US-ASCII"?>
<!ELEMENT Order (Customer, Part+)>
<!ATTLIST Order key CDATA #REQUIRED>
...

To point to the DTD, use a namespace table file, (NST) file. For example:

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dtd1="http://schemas.myco.com/sales/order.dtd"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:documentation>Queries part orders at myco.com.</wsdl:documentation>
<operation name="retrieveOrders">

<wsdl:documentation>Retrieves all the Order documents.
</wsdl:documentation>
<query>

<SQL_query>select db2xml.varchar(order) from sales_tab
</SQL_query>
<XML_result name="ORDER" element="dtd1:Order"/>

</query>
</operation>

</DADX>

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:dtd1="http://schemas.myco.com/sales/order.dtd"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:documentation>Queries part orders at myco.com.</wsdl:documentation>

<operation name="retrieveOrders">
<wsdl:documentation>Retrieves all the Order documents.
</wsdl:documentation>
<query>

<SQL_query>select db2xml.varchar(order) from sales_tab
</SQL_query>
<XML_result name="ORDER" element="dtd1:Order"/>

</query>
</operation>

</DADX>

Figure 22. Query operation with UDF and UDT

Chapter 3. Creating a DB2 Web service with WORF 41

You must reference this file in the group.properties file. See the example
in to learn more about this file.

Example 2: Update operation

The following example shows an operation that updates the e-mail address
of a customer for a given order:

The Update operation can contain SQL INSERT, DELETE, or UPDATE
statements in the <SQL_update> element.

Example 3: Call operation
These examples show Call operations that call stored procedures.

If your stored procedure returns result sets, you must define these result
sets in the result_set_metadata tag in the DADX file so that WORF can
generate the WSDL and XML schema files (XSD) for this web service
operation. Figure 25 on page 43 shows the definition of a result set meta
data that is referenced two times.

<?xml version="1.0"?>
<namespaceTable xmlns="http://schemas.ibm.com/db2/dxx/nst">

<mapping dtdid="c:\dxx\samples\dtd\getstart.dtd"
namespace="http://schemas.ibm.com/db2/dxx/samples/dtd/getstart.dtd"
location="/dxx/samples/dtd/getstart.dtd/XSD"/>

<mapping dtdid="getstart.dtd"
namespace="http://schemas.myco.com/sales/getstart.dtd"
location="/getstart.dtd/XSD"/>

<mapping dtdid="order.dtd"
namespace="http://schemas.myco.com/sales/order.dtd"
location="/order.dtd/XSD"/>

</namespaceTable>

Figure 23. NST file

<operation name="updateOrderEmail">
<wsdl:documentation>Updates the email address for an order.
</wsdl:documentation>
<update>

<SQL_update>update order_tab set customer_email = :email
where order_key = :key</SQL_update>

<parameter name="key" type="xsd:int"/>
<parameter name="email" type="xsd:string"/>

</update>
</operation>
</DADX>

Figure 24. Update operation

42 Web Services Object Runtime Framework: Implementing DB2 Web Services

You can also call a stored procedure using the following format:

Example 4: RetrieveXML operation

The DADX file in Figure 27 on page 44 implements one retrieveXML
operation using the stored procedure dxxGenXML.

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<result_set_metadata name="employeeSalaryReport" rowName="employee">
<column name="NAME" type="VARCHAR" nullable="true" />
<column name="JOB" type="CHAR" nullable="true" />
<column name="3" as="SALARY" type="DOUBLE" nullable="true" />

</result_set_metadata>
<operation name="twoResultSets">
<call>
<SQL_call>CALL TWO_RESULT_SETS (:salary, :sqlCode)
</SQL_call>

<parameter name="salary" type="xsd:double" kind="in" />
<parameter name="sqlCode" type="xsd:int" kind="out" />
<result_set name="employees1" metadata="employeeSalaryReport" />
<result_set name="employees2" metadata="employeeSalaryReport" />
</call>
</operation>
</DADX>

Figure 25. Definition of a resultset meta data referenced two times

<operation name="callProc1">
<wsdl:documentation>Call the Proc1 stored procedure.
</wsdl:documentation>
<call>

<SQL_call>
CALL Proc1 (:x, :y, :z)

</SQL_call>
<parameter name="x" type="xsd:string" kind="in"/>
<parameter name="y" type="xsd:int" kind="in/out"/>
<parameter name="z" element="dtd1:Order" kind="out"/>

</call>
</operation>

Figure 26. DADX with alternate Call operation

Chapter 3. Creating a DB2 Web service with WORF 43

The operation in this example generates XML documents based on the
mapping in the getstart_xcollection.dad file. The operation specifies an
SQL override which replaces the SQL statement defined in the DAD file
and references two parameters in the override statement: :color and
:minprice.

The DAD file for this example is found in the appendix of DB2 XML
Extender: Administration and Programming.

Example 5: StoreXML operation

This example shows a DADX file that references a DAD using RDB_node
mapping, getstart_xcollection_rdb.dad:

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://www.w3.org/1999/xhtml">
mycompany part orders service.

</wsdl:documentation>
<operation name="findByColorAndMinPrice">

<wsdl:documentation>Returns all the orders that have the specified color
and at least the specified minimum price.</wsdl:documentation>

<retrieveXML>
<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>
select o.order_key, customer_name, customer_email,

p.part_key, color, quantity, price, tax, ship_id, date, mode
from order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16)
as ship_id, date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
and color = :color and price >= :minprice

order by order_key, part_key, ship_id
</SQL_override>
<parameter name="color" type="xsd:string"/>
<parameter name="minprice" type="xsd:decimal"/>

</retrieveXML>
</operation>

</DADX>

Figure 27. DADX with retrieveXML operation

44 Web Services Object Runtime Framework: Implementing DB2 Web Services

http://www.ibm.com/software/data/db2/extenders/xmlext/library.html
http://www.ibm.com/software/data/db2/extenders/xmlext/library.html

The storeXML operation is implemented by the dxxInsertXML stored
procedure if a <collection_name> element is used instead of a <DAD_ref>
element. It performs the same operations as the dxxShredXML procedure,
but uses the name of an XML collection instead of a DAD file.

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://www.w3.org/1999/xhtml">
mycompany part orders service.

</wsdl:documentation>

<implements namespace="http://www.poia.org/part_orders.wsdl"
location="http://www.poia.org/part_orders.wsdl"/>

<operation name="storeOrder">
<wsdl:documentation>Stores an automotive part order.
</wsdl:documentation>
<storeXML>

<DAD_ref>getstart_xcollection_rdb.dad</DAD_ref>
</storeXML>

</operation>
</DADX>

Figure 28. DADX with StoreXML operation

Chapter 3. Creating a DB2 Web service with WORF 45

46 Web Services Object Runtime Framework: Implementing DB2 Web Services

Chapter 4. Packaging your DB2 Web service

Web archives files (WAR) are used to package, distribute, and install Web
applications. A Web application is a collection or a library of servlets, Java Server
Pages (JSPs), HTML files, XML files, graphics, and other Web resources that
logically make up a Java-based Web application.

You generally package the files that comprise your Web application in a single
WAR file for deployment. A WAR file with a DB2 Web service contains the
web.xml server configuration files, the group configuration files and the DAD and
DADX files. If the Web service creator wants to disable automatic deployment by
using an IBM ConfigManager, the Web service creator would also provide a
deployment descriptor file for the Web services.

Generating deployment descriptors
WebSphere 4.0 uses a custom ConfigManager
(com.ibm.soap.server.XMLDrivenConfigManager) that disables deployment and
undeployment at run-time. Instead, WebSphere reads a file that lists the deployed
services when the application is started. To create this file, you must create a
deployment descriptor file for each Web Service, or DADX file, which identifies
configuration and deployment information. You insert the file into the XML file
named dds.xml, which is read by the WebSphere ConfigManager when the Web
application starts. When using the Apache SOAP configuration managers, the Web
services get deployed on demand at run-time so you do not have to add them to
the deployment descriptor file.
1. Verify that the worf.jar and soap.jar files are in your CLASSPATH.
2. Generate the deployment descriptor from a DADX file, using the class

com.ibm.etools.webservice.rt.dadx.Dadx2Dd with the following parameters:
-r The resource name of the Web service relative to the group. This

argument is required.
-p The group path. This argument is required.
-n The group name. This argument is required.
-i The name of the DADX name. This argument is optional. If present, the

file must exist and be readable. If absent then the DADX file is read
from standard input. To indicate standard input, use a dash (–).

-o The deployment descriptor file name. This argument is optional. If
present the file must be writable and will be overwritten if it already
exists. If absent then the deployment descriptor file is written to
standard output. To indicate standard output, use a dash (–).

For example, if the current directory is the WEB-INF directory, the following
command reads the ZipCity.dadx file from the dxx_travel group and writes the
deployment descriptor to the dds subdirectory:
java com.ibm.etools.webservice.rt.dadx.Dadx2Dd -r ZipCity.dadx -p \travel

-n \dxx_travel -i classes\groups\dxx_travel\ZipCity.dadx
-o classes\dds\dxx_travel\ZipCity.isd

3. Copy the content of the newly created ISD file and add it to the dds.xml file in
your Web application directory.

4. Restart the Web application.

© Copyright IBM Corp. 2002 47

Creating the WAR file
To create a WAR file, do the following:
1. Create the basic directory structure for the WAR file as in the example in

Figure 29.

You can find this worf directory hierarchy in the services.war file. These files
are used when you run the TEST page. The worf-servlets.jar file is in the lib
directory in the dxxworf.zip. The web.xml is the standard J2EE web.xml. An
empty web.xml would look like the example in Figure 30.

2. For each group,
a. Create your group subdirectory (for example WEB-

INF\classes\groups\myGroup) and include the group.properties and your
DADX file in the subdirectory.

b. Edit the WEB-INF\web.xml file to add the servlet and the servlet-mapping
(for example, add a servlet name called myGroup and a URL-mapping called
myURLPath). This is described in “Defining the web.xml and
group.properties files” on page 23.

c. See “Generating deployment descriptors” on page 47 for information on
running the Dadx2Dd application. In the following example, the first
instruction changes to the WEB-INF directory on a Windows platform. Then
run the application. When the application completes, change back to the
root directory.
cd WEB-INF
java com.ibm.etools.webservice.rt.dadx.Dadx2Dd

-r ivt.dadx
-p \myURLPath

WEB-INF\lib\worf-servlets.jar
WEB-INF\web.xml
worf\class8.gif
worf\doTest.jsp
worf\doTestError.jsp
worf\doTestInputs.jsp
worf\doTestInputsError.jsp
worf\doTestInputsPrompt.html
worf\doTestMethods.jsp
worf\doTestMethodsError.jsp
worf\doTestResultPrompt.html
worf\error_tsk.gif
worf\field8.gif
worf\info_tsk.gif
worf\method8.gif
worf\outline8.gif
worf\properties8.gif
worf\style.css

Figure 29. Directory structure

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
</web-app>

Figure 30. Empty web.xml file

48 Web Services Object Runtime Framework: Implementing DB2 Web Services

-n \myGroup
-i classes\groups\myGroup\ivt.dadx
-o classes\dds\myGroup\ivt.isd
cd ..

d. See “Generating deployment descriptors” on page 47 for information on the
dds.xml file. Create or modify a dds.xml file to add the content of the
generated file from Running the dadx2dd application on page 48 (for
example WEB-INF\classes\dds\myGroup\ivt.isd). An empty dds.xml file
looks like the following:
<?xml version=’1.0’?>
<dds>
</dds>

3. Create the WAR file
v from a command line by issuing the following command:

jar -cvf minWORFwar.war WEB-INF worf

v from WebSphere Studio by selecting File from the menu; then select Export,
and then WAR file. Select the project name your Web application is in and
specify a file name.

4. Deploy the WAR file as described in the sample installs for WebSphere
Application Server or Apache Jakarta Tomcat (for example, with myContext as
the Web application context).

5. Verify that you have created the WAR file correctly by running the TEST page.
For example, issue the following command from your browser:
http://<your WebAppServer>/myContext/myURLPath/ivt.dadx/TEST

See “Testing the Web service”.

Testing the Web service
You can test Web services from the Web Service Sample Page. This page displays
sample Web services that are provided with WORF. You can create your own
welcome page for your Web services similar to the index.html page in the WORF
samples. If you do this, you will need to include the URLs to all of the TEST pages
of the DADX files.

Chapter 4. Packaging your DB2 Web service 49

Each Web service has its own line, with links to functions such as displaying the
generated WSDL file, the generated XML schema (XSD) files, and the generated
test page for the Web service. The TEST column has a link to the Web Service Test
Page, described in “Scenario” on page 15.

To add and test your own Web service:
v Open the HTML file for the Web services Sample Page:

http://<your WebAppServer>/myContext/index.html

The Web services are in a table format, one row for each Web service.
v Create a new row for your Web service, modeling it on the HTML tagging

provided for the product samples.

Figure 31. Web services sample page

50 Web Services Object Runtime Framework: Implementing DB2 Web Services

Chapter 5. Generating XSD and WSDL files from the DADX

The DADX file provides information that is used to generate the following types of
files:
v The XML schema (XSD) file

– The Web service has an XSD.
– Any XML documents stored in columns have XSDs, but these are converted

from the DTD.
v The WSDL document that describes the Web service
v The deployment and reusable WSDL parts for Universal Description, Discovery,

Integration (UDDI) registration.

The following sections describe how to generate these files.

Converting a DTD to an XSD file
XML Extender currently uses DTDs to define document structure, while WSDL
uses XML schemas (XSD files). WORF automatically creates an XML Schema (XSD)
file. You must add an entry to the namespace table (NST file) to define the
namespace associated with a DTD, and to enable conversion of the DTD to XSD.

You can request an XSD file by using the following URL syntax:
http://host/path/dtd_file.dtd/XSD

For example:
http://localhost:8080/services/sample/order.dtd/XSD

. In this case, the order.dtd file must be in WEB-INF\groups\dxx_sample.

WORF and the XML Extender locate DTDs through their DTDID. The DTDID is
either a file name or the key value in the DTD_REF table of your database. XML
Extender creates the DTD_REF table when you enable your database. The best
practice is to store DTDs in the DTD_REF table since file locations may change
when you move your Web application to another machine. The following extract
from the Windows 2000 setup-xcollection.cmd file in the SALES_DB example
shows how to insert DTDs into the DTD_REF table:
db2 "connect to SALES_DB"
rem Insert DTDs
db2 "insert into db2xml.dtd_ref values(’getstart.dtd’,
db2xml.XMLClobFromFile(’%CD%\getstart.dtd’),
0, ’user1’, ’user1’, ’user1’)"
db2 "insert into db2xml.dtd_ref values(’order.dtd’, db2xml.XMLClobFromFile(’%CD%\order.dtd’),
0, ’user1’, ’user1’, ’user1’)"

Generating WSDL from the DADX
The DADX document contains the information required to implement the Web
service. It also contains the information required to generate the WSDL document
that describes the Web service.

WSDL is an XML vocabulary that is used to describe the interface of business
services. It is used in publishing services to a UDDI registry. WSDL allows

© Copyright IBM Corp. 2002 51

development tools to programmatically create requester and provider code for use
in binding to a Web service, as well as enabling preconditioned applications to
dynamically bind to a Web service. It can be used to specify the data required for
requests and responses, and uses XML Schema for precise data definition.

To generate the WSDL, submit the following URL:
http://host_name:port/webapp_name/group_name/dadx_file.dadx/WSDL

WORF dynamically generates the WSDL document. You can publish this in UDDI
or some other Web service directory.

Using the running example, you can submit the following URL:
http://localhost:8080/services/sales/PartOrders.dadx/WSDL

Generating WSDL for UDDI registration
In the UDDI best practices document for using WSDL with UDDI Registries, it is
recommended that the WSDL document be split into two parts: the deployment
and reusable parts.

The deployment part includes the <service> element which contains the URLs
where the service is deployed. The deployment part imports the reusable part
which contains the other top level WSDL elements.

The reusable part corresponds to a UDDI <tModel> element and the deployment
part corresponds to a UDDI <businessService>. Within the <businessService>
element, each WSDL <port> element corresponds to a UDDI <bindingTemplate>
element.

To learn more about UDDI and Web service registration, see the Universal
Description, Discovery and Integration of Business for the Web site

To generate the WSDL parts, submit a URL with the WSDL path information:
v To generate the deployment part, submit a URL with WSDLservice key words:

http://host_name:port/webapp_name/group_name/DADX_file.dadx/WSDLservice

v To generate the reusable part, submit a URL with WSDLbinding key words:
http://host_name:port/webapp_name/group_name/DADX_file.dadx/WSDLbinding

The following example demonstrates how to generate the deployment and the
reusable parts of the WSDL document. To generate the deployment part, submit a
URL with WSDLservice command, as shown in the example:
http://localhost:8080/sales_db/part_orders.dadx/WSDLservice

To generate the reusable part, submit a URL with WSDLbinding command, as shown
in the example:
http://localhost:8080/sales_db/part_orders.dadx/WSDLbinding

The example in “Generating WSDL for UDDI registration” deals with the case in
which the service implementor creates a Web service that is unique to a company.
However, one of the usage scenarios that UDDI is designed to handle is the case in
which a standards body or vendor defines a Web service interface tModel, and
service implementors use it. For example, the airline industry might define a Web
service that provided flight schedules, which airlines could then implement. UDDI

52 Web Services Object Runtime Framework: Implementing DB2 Web Services

http://www.uddi.org/
http://www.uddi.org/

provides a way for users to search for all registered services that implement a
given tModel, so a travel planning application could locate all the airline flight
schedule services.

Use the DADX <implements> element to declare that the service implements a
Web Service described by a reusable WSDL document defined elsewhere. An
example of an <implements> element is shown in Figure 32.

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://schemas.ibm.com/db2/dxx/dadx"

...
elementFormDefault="qualified">
<import namespace="http://schemas.xmlsoap.org/wsdl/"
schemaLocation="wsdl.xsd"/>

....
<element name="DADX">
<annotation>

<documentation>
Defines a Web Service.
The Web Service is described by an optional WSDL documentation element.
....

</documentation>
</annotation>
<complexType>

<sequence>
<element ref="wsdl:documentation" minOccurs="0"/>
<element ref="dadx:implements" minOccurs="0"/>
<element ref="dadx:result_set_metadata" minOccurs="0" maxOccurs="unbounded"/>
<element ref="dadx:operation" maxOccurs="unbounded"/>

</sequence>
</complexType>

...
<element name="implements">

<annotation>
<documentation>

Defines the namespace and location of a set of WSDL bindings
defined elsewhere. This information is imported into the
WSDL document generated for this Web Service.

</documentation>
</annotation>
<complexType>

<attribute name="namespace" type="anyURI" use="required"/>
<attribute name="location" type="anyURI" use="required"/>

</complexType>
</element>

...
</schema>

Figure 32. Element <implements>

Chapter 5. Generating XSD and WSDL files from the DADX 53

54 Web Services Object Runtime Framework: Implementing DB2 Web Services

Appendix A. DADX environment checker

Document Access Definition Extension (DADX) provides a way for Web Services
Object Runtime Framework (WORF) to support database access. WORF is an
extension to Apache SOAP 2.2 or later that makes Web services easier to develop
and use. One of the key features of WORF is the resource-based deployment.
Resource-based deployment means that resource files, such as DADX files, can be
used to develop Web services with WORF. Resource files describe the Web services
to WORF, so that WORF can generate the appropriate Web services from these
files.

The resource files can be created by the user and must conform to specific syntax
and semantic rules. See “Defining the Web service with the DADX file” on page 26
for information on the rules. The resource files can make references to each other
(for example, a DADX file can contain references to DAD files). These references
must be correct so that the Web services can be deployed properly.

Purpose and operation of the DADX environment checker
The DADX environment checker performs different syntax and semantic checks on
the NST, DAD and DADX files used to create and run Web services with WORF.
Use the DADX environment checker to help minimize the number of errors that
occur when deploying Web services with WORF.

The DADX environment checker is a Java application that is called from the
command line. When invoked, it produces an output file that contains errors,
warnings, and success indicators. The name of the output text file is user-defined.
If no name is specified, the standard output is used. See the syntax of the
command in “Running the DADX environment checker” on page 56.

Installing the DADX environment checker
The DADX environment checker is included in dxxworf.zip, in the \tools\lib
subdirectory. The jar files containing the code for this tool are CheckersCommon.jar
and DADXEnvChecker.jar. Make sure that you have a JRE or JDK Version 1.3.1 or
later, installed on your system. Update your classpath to include all of the
following archives:
v CheckersCommon.jar, DADXEnvChecker.jar and worf.jar, included in the

\tools\lib directory in dxxworf.zip
v xmlParserAPIs.jar and xercesImpl.jar, included in the binary distribution for

Xerces-J 2.0.2 downloadable at http://xml.apache.org
v soap.jar, included in the binary distribution for SOAP 2.2 downloadable at

http://xml.apache.org
v activation.jar, included in the binary distribution for JavaBeans Activation

Framework 1.0.1, downloadable at http://java.sun.com
v mail.jar, included in the binary distribution for JavaMail 1.2 downloadable at

http://java.sun.com
v servlet.jar, included in the distribution for Jakarta Tomcat Version 3.2.x through

4.0.3 downloadable at http://www.apache.org/
v db2java.zip, included in the /java directory located in the directory where you

installed DB2

© Copyright IBM Corp. 2002 55

For example, if you are running in the Windows environment, you must set your
classpath by issuing the following command appropriate to your own directory
structure:
set classpath=
c:\dxxworf\tools\lib\CheckersCommon.jar;
c:\dxxworf\tools\lib\DADXEnvChecker.jar;
c:\dxxworf\tools\lib\worf.jar;
c:\Xerces\xmlParserAPIs.jar;
c:\Xerces\xercesImpl.jar;
c:\soap2-2\soap.jar;
c:\jaf-1.0.1\activation.jar;
c:\javamail-1.2\mail.jar;
c:\jakarta-tomcat-3.2.2\lib\servlet.jar;
c:\Program Files\sqllib\java\db2java.zip;

Running the DADX environment checker
The DADX environment checker is a Java program, that can run on JDK version
1.3.1 and later. To run the DADX environment checker, execute the following
command (on a single line):
java com.ibm.etools.webservice.util.Check_install
[-srv] [-schdir pathToSchemasDir] [-sch schemaLocations] [-out outputFile]
fileToCheck

For example if you extracted dxxworf.zip in directory c:\dxxworf, you would type
the following to run the DADX checker on the resource files contained by the
c:\tomcat\webapps\services directory:
java com.ibm.etools.webservice.util.Check_install
-srv -schdir c:\dxxworf\schemas
-out myOutputFile.txt c:\tomcat\webapps\services

Parameters
Here are the parameters that can be used to run the DADX environment checker:

-schdir pathToSchemasDir
Specifies the absolute path to the directory where the schemas used for
validating NST and DADX files are stored

-sch schemaLocations
Specifies a list of schemas to be used by the parser to validate the files. The
DADX checker allows the user to specify the value of a property of the
Xerces parser. This property can be used to specify the location of XML
schemas needed to perform the validation of the files being parsed. You
specify the location of a schema by providing the name of the target
namespace of the schema (for example: http://myschema) followed by the
actual location of the schema. It could be a path in the file system (for
example, c:\dir\schema1.xsd) or a valid URL. But the XML documents
themselves can contain declarations of schema locations. The
schemaLocation attribute is used in an XML document to provide this
information. Here is an example of the beginning of an XML document:
<purchaseReport

xmlns="http://www.example.com/Report"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.com/Report

http://www.example.com/Report.xsd">

For a particular namespace, the parser will use the schema location defined
using the property of the parser, even if the schemaLocation attribute

56 Web Services Object Runtime Framework: Implementing DB2 Web Services

defines another schema location for the same namespace. The syntax for
schemaLocations is the same as for schemaLocation attributes in instance
documents: for example, http://www.example.com file_name.xsd. The user can
specify more than one XML Schema: for example, -sch
http://www.example_1.com file_name_1.xsd http://www.example_2.com
file_name_2.xsd

-out outputFile
Specifies the output text file name; if omitted, the standard output is used.

-srv Indicates that the checks must be performed on all of the NST, DAD and
DADX files found under the Web services module directory (for example
c:\tomcat\webapps\services) passed as the fileToCheck. If this option is not
used, then the checks are performed only on the DADX file that is passed
as the file to check and on the related data contained in other resource
files. For example, the DAD files referred to in this DADX file will be
checked and then the DTDIDs referred to in these DAD files will be
checked in the NST file. And only the data related to the DADX file will be
checked in the NST file and in the web.xml file.

fileToCheck
If parameter -srv is not used, then the value of fileToCheck is the DADX file
that is checked. If parameter -srv is used then the fileToCheck value is the
root directory of the Web services module; for example, the root directory
of an unzipped .war file as services for the services.war module.

-help Displays command line option information

-version
Displays version information

Sample files
A sample file can be found in the \tools\samples directory from dxxworf.zip.
DADXEnvChecker_sample.txt is an output text file showing the results of the checks
performed on a Web services module. This file is generated by the DADX
environment checker and uses the file name you gave in the -out parameter.

Indicating errors and warnings in the output text file
When the -srv parameter is used, errors, warnings, and success indicators are
grouped together in paragraphs. Each paragraph is associated with a checked file.
The results of checking each file are displayed in the output file if you indicated a
file name, or in the standard output device if no filename is indicated.

The paragraphs are grouped together according to the path, or subdirectories, in
directory groups. Here is an excerpt of an output text file showing the error
messages corresponding to the checks performed in files sales_db.nst and
getstart_xcollection.dad belonging to group /groups/dxx_sales_db:
Checking group: c:\tomcat\webapps\services\WEB-
INF\classes\groups\dxx_sales_db
Checking NST file: c:\tomcat\webapps\services\WEB-
INF\classes\groups\dxx_sales_db\sales_db.nst
INFO. Line 5: file "c:\dxx\samples\dtd\getstart.dtd" is accessible.
ERROR. Line 12: file "wrongDtd.dtd" CANNOT be found
either in the file system or in the database.
INFO. Line 8: file "getstart.dtd" is accessible.
Checking DAD file: c:\tomcat\webapps\services\WEB-

Appendix A. DADX environment checker 57

INF\classes\groups\dxx_sales_db\getstart_xcollection.dad
WARNING. Line 4: DTDID "dtd_.dtd" CANNOT be found in the DTD_REF table.
INFO. Line 9: the DTDID "c:\dxx\samples\dtd\getstart.dtd"
has been declared in the NST file.

Errors, warnings and success messages can begin with a line number if the error or
warning or success event is related to a specific line. The line numbers in the
output text indicate the line numbers where the checked elements associated with
the messages were found in the files. There is no order related to the output within
a paragraph.

Checks performed by the DADX environment checker
On invocation, when the -srv parameter is used, the DADX environment checker
first performs checks on the web.xml file within directory web-inf. Then, the
DADX environment checker performs checks on the following types of files found
in each group directory in the web-inf\classes\groups directory:
v NST files
v DAD files
v DADX files

On invocation without the -srv parameter, the DADX environment checker first
performs checks on the DADX file that is passed as the file to check. Then, the
DADX environment checker checks the DAD files that are referenced in this DADX
file. It also performs checks on the NST file of the group to which the DADX file
belongs. The DADX environment checker eventually checks the web.xml file
within the web-inf directory containing the DADX file.

Connection to the database with which the group is
associated

For some checks on NST and DADX files, the DADX environment checker tries to
query the database with which the group is associated. Therefore, before starting
checking the files of a group, the checker will try to establish a connection to the
database using data contained in file group.properties.

The following example shows an error message provided by the checker because
the connection to the database failed:
Checking group: c:\test\jakarta-tomcat-3.2.2
##Checking group: c:\tomcat\webapps\services
\WEB-INF\classes\groups\dxx_travel
WARNING. Connection error [IBM][CLI Driver]
SQL1013N The database alias name or database name
"TRAVELLL" could not be found.
SQLSTATE=42705

Checks performed on the web.xml
The DADX environment checker checks the web-inf\web.xml file under the root
directory of the Web Service module, which is services in our example.

Here is an excerpt of the web.xml file:
<servlet>
<servlet-name>dxx_sales_db</servlet-name>
<servlet-class>com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker
</servlet-class>
<init-param>
<param-name>faultListener</param-name>

58 Web Services Object Runtime Framework: Implementing DB2 Web Services

<param-value>org.apache.soap.server.DOMFaultListener
</param-value>
</init-param>
<load-on-startup>-1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>dxx_sales_db</servlet-name>
<url-pattern>/sales/*</url-pattern>
</servlet-mapping>

The <servlet-class> tags, which are direct children of the <servlet> tags must have
as a value either com.ibm.etools.webservice.rt.isd.servlet.IsdInvoker or
com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker. When their values are
different, the checker provides an error message. The following example shows the
results of the checks performed on <servlet-class> tags in a web.xml document:
INFO. Line 21: servlet class for
servlet "dxx_sales_db" is a correct servlet class.
ERROR. Line 31: servlet class
"com.ibm.etools.webservice.rt.dxx.servlet.OtherInvoker"
for servlet "dxx_sample"
is NOT a correct servlet class.
INFO. Line 41: servlet class
for servlet "dxx_travel"
is a correct servlet class.

Each <servlet-mapping> tag contains a <servlet-name> tag with a value that must
be the same as the value of the <servlet-name> tag of a <servlet> tag. If this is not
the case the checker provides an error message as shown in the following example:
ERROR. There is no <servlet> tag declaring servlet
"isd_demos" mapped at line 50.

On the other hand, each <servlet> tag must have a corresponding
<servlet-mapping> tag with the same servlet name as theirs. If a <servlet> tag has
no corresponding <servlet-mapping> tag, the checker provides the following kind
of message:
ERROR. There is no <servlet-mapping> tag
for servlet "dxx_travel" declared
at line 40.

Each <servlet-mapping> tag also contains a <url-pattern> tag with a value that
must be unique. If two <url-pattern> tag have the same value, the checker
provides an error message as shown in the following example:
ERROR. Line 56: "/sales/*" is already
declared as the URL pattern for servlet "isd_demos"
(see line 50).

Checks performed on NST files
In each group directory there might be an NST file. NST files declare the
namespace table of the group. They contain mappings between DTD identifiers
and the namespace and location of the XML schema that is automatically
generated from the DTD.

Here is an excerpt of an NST file:
<namespaceTable
xmlns="http://schemas.ibm.com/db2/dxx/nst">
<mapping dtdid="c:\dxx\samples\dtd\getstart.dtd"

namespace="http://schemas.ibm.com/db2/dxx/samples/dtd/getstart.dtd"

Appendix A. DADX environment checker 59

location="/dxx/samples/dtd/getstart.dtd/XSD"/>
<mapping dtdid="getstart.dtd"

namespace="http://schemas.myco.com/sales/getstart.dtd"
location="/getstart.dtd/XSD"/>

The DADX environment checker first validates NST files against their schema
nst.xsd. Here is an example of a validation error reported by the checker:
ERROR. Validation error, in
"file:///c:/tomcat/webapps/services/WEB-
INF/classes/groups/dxx_sales_db/sales_db.nst",
line 8, column 35. cvc-complex-type.2.4.a:
Invalid content starting with element ’mappin’.
The content must match
’("http://schemas.ibm.com/db2/dxx/nst":mapping){0-UNBOUNDED}’.
ERROR. Validation error, in
"file:///c:/tomcat/webapps/services/WEB-
INF/classes/groups/dxx_sales_db/sales_db.nst",
line 17, column 32. cvc-complex-type.4: Attribute ’dtdid’
must appear on element ’mapping’.
ERROR. Validation error, in
"file:///c:/tomcat/webapps/services/WEB-
INF/classes/groups/dxx_sales_db/sales_db.nst",
line 17, column 32. Duplicate unique value
[ID Value: /order.dtd/XSD] declared for identity constraint
of element "namespaceTable".

Eventually, the checker checks that the dtdid attributes of the <mapping> elements
are either:
v a correct path in the file system, or
v a value stored in column DTDID in the db2xml.DTD_REF table

The following example shows the results of the checks on the <mapping> elements
of an NST file:
INFO. Line 5: file
"c:\dxx\samples\dtd\getstart.dtd" is accessible.
ERROR. Line 14: file
"wrongDtd.dtd" CANNOT be found either in
the file system or in the database.

Checks performed on DAD files
The Document Access Definition (DAD) file is an XML file that is supported in
DB2 XML Extender. The DAD associates XML documents to DB2 database tables
through two alternative access and storage methods: XML columns and XML
collections.

The following example shows the beginning of a DAD file:
<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">
<DAD>
<dtdid>c:\dxx\samples\dtd\getstart.dtd</dtdid>
<validation>NO</validation>
<Xcollection>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Order SYSTEM
"c:\dxx\samples\dtd\getstart.dtd"
</doctype>
<root_node>
<element_node name="Order">
...

60 Web Services Object Runtime Framework: Implementing DB2 Web Services

The DADX environment checker first checks that the DAD file is valid against its
DTD dad.dtd. You must ensure that the path to dad.dtd specified in the DOCTYPE
declaration of the DAD is correct.

Then the checker gets the value of the <dtdid> tag if it is present. If the value of
this tag does not match a value stored in column DTDID in the db2xml.DTD_REF
table, then the checker issues a warning. If the <validation> tag in the DAD
contains a value of YES, then the checker issues an error message:
Checking DAD file:
c:\tomcat\webapps\services\WEB-INF
\classes\groups\dxx_sales_db\order.dad
ERROR. Line 4: DTDID "wrongDtd.dtd"
CANNOT be found in the DTD_REF table.

Then the checker determines whether the DAD file declares an Xcollection or an
Xcolumn. If it declares an Xcollection, the DTD specified in the <doctype> element
is extracted. The DADX environment checker checks that this DTD is declared in
the NST file.

The following example shows the results of the checks of an Xcolumn and an
Xcollection DAD belonging to the same group:
Checking DAD file: c:\tomcat\webapps\services\WEB-
INF\classes\groups\dxx_sales_db\getstart_xcolumn.dad
INFO. Line 4: DTDID "getstart.dtd" was found in the DTD_REF table.

Checking DAD file: c:\tomcat\webapps\services\WEB-
INF\classes\groups\dxx_sales_db\order-public.dad
INFO. Line 4: DTDID "order.dtd" was found in the DTD_REF table.
ERROR. Line 8: the DTDID "order.dtd" has NOT been
declared in the NST file.

You can also perform other checks on the DAD files by using the DAD checker.
The DAD checker is a separate tool that is also contained in the /tools/lib
directory in dxxworf.zip. For more information, see the documentation on this tool
at http://www-
4.ibm.com/software/data/db2/extenders/xmlext/download/beta/dadchecker.html.

Checks on DADX files
Document Access Definition Extension (DADX) is a technology for rapidly creating
Web services that access databases. DADX lets you define Web service operations
using the standard SQL statements SELECT, INSERT, UPDATE, DELETE, and
CALL, and the DB2 XML Extender stored procedures.

Here is an excerpt of a DADX file:
<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<operation name="find">
<documentation xmlns="http://schemas.xmlsoap.org/wsdl/">
Returns the parts from order #1 with price > 20000.

</documentation>
<retrieveXML>
<DAD_ref>getstart_xcollection.dad</DAD_ref>
<no_override/>
</retrieveXML>
</operation>
<operation name="findByMinPrice">
<retrieveXML>
<collection_name>
getstart_xcollection.dad

Appendix A. DADX environment checker 61

</collection_name>
<no_override/>
<parameter name="minprice"
type="xsd:decrimal"/>
</retrieveXML>
</operation>

The DADX environment checker first validates the DADX file against its schema,
dadx.xsd. Then the checker gets the values of the <DAD_REF> or
<collection_name> tags and it checks that the values of these tags are:
v for <DAD_REF> tags, a correct path to a DAD file in the file system
v for <collection_name>, the name of an enabled collection, which is a value

stored in column COL_NAME from table db2xml.xml_usage.

The following example shows the results of the checks performed on a DADX file:
Checking DADX file: c:\tomcat\webapps\services\WEB-
INF\classes\groups\dxx_sales_db\PartOrders.dadx
ERROR. Validation error, in "file:///c:/tomcat/webapps/services/WEB-
INF/classes/groups/dxx_sales_db/PartOrders.dadx",
line 8, column 67. cvc-complex-type.2.4.c:
The matching wildcard is strict, but no declaration
can be found for element ’as’.
INFO. Line 16: for operation "find",
DAD "getstart_xcollection.dad" was found.
ERROR. Line 26: for operation "findAll",
DAD "non_existing_dad.dad" was NOT found.
INFO. Line 44: for operation "findByColor",
DAD "getstart_xcollection.dad" was found.
INFO. Line 65: for operation "findByMinPrice",
DAD "getstart_xcollection.dad" was found.

If an <operation> tag has no <DAD_REF> or <collection_name> tag as a child, the
checker issues a message indicating that no check was performed for this
particular operation, as shown in the following example:
Checking DADX file: c:\tomcat\webapps\services\WEB-
INF\classes\groups\dxx_sample\HelloSample1.dadx
INFO. Line 10: no <DAD_ref> or <collection_name>
elements to check for operation "listDepartments".

The DADX environment checker also checks if WORF will be able to find a
deserializer for the parameters declared in the DADX file. A deserializer
reconstructs XML messages received across a network connection into the specified
variable or object. For every <parameter> tag, the value of its type attribute must
be a type that can be deserialized. If no deserializer can be found for a particular
type, the checker provides an error message as shown in the following example:
ERROR. Line 13: no deserializer was found to deserialize a
"http://www.w3.org/2001/XMLSchema:ssstring", using encoding
"http://schemas.xmlsoap.org/soap/encoding/".

62 Web Services Object Runtime Framework: Implementing DB2 Web Services

Appendix B. XML schema for the DADX file

The following schema, dadx.xsd, describes the DADX.

<?xml version=″1.0″ encoding=″UTF-8″?>
<schema

targetNamespace=″http://schemas.ibm.com/db2/dxx/dadx″
xml:lang=″en″
xmlns=″http://www.w3.org/2001/XMLSchema″
xmlns:dadx=″http://schemas.ibm.com/db2/dxx/dadx″
xmlns:wsdl=″http://schemas.xmlsoap.org/wsdl/″
elementFormDefault=″qualified″>
<import namespace=″http://schemas.xmlsoap.org/wsdl/″

schemaLocation=″wsdl.xsd″/>
<annotation>

<documentation>
A Document Accession Definition Extension (DADX) document

defines a Web Service that is implemented by operations that
access a relational database and that optionally use stored procedures,
types and functions provided by the DB2 XML
Extender.

</documentation>
</annotation>

Figure 33. DADX schema (Part 1 of 10)

© Copyright IBM Corp. 2002 63

<element name=″DADX″>
<annotation>

<documentation>
Defines a Web Service.
The Web Service is described by an optional WSDL documentation element.
The Web Service may implement a set of WSDL bindings defined elsewhere.
The Web Service consists of one or more uniquely named operations.

</documentation>
</annotation>
<complexType>

<sequence>
<element ref=″wsdl:documentation″ minOccurs=″0″/>
<element ref=″dadx:implements″ minOccurs=″0″/>
<element ref=″dadx:result_set_metadata″ minOccurs=″0″
maxOccurs=″unbounded″/>
<element ref=″dadx:operation″ maxOccurs=″unbounded″/>

</sequence>
</complexType>
<key name=″result_set_metadataNames″>

<selector xpath=″dadx:result_set_metadata″/>
<field xpath=″@name″/>

</key>
<keyref name=″resultSetMetatdata″ refer=″dadx:result_set_metadataNames″>

<selector xpath=″dadx:operation/dadx:call/dadx:result_set″/>
<field xpath=″@metadata″/>

</keyref>
<unique name=″operationNames″>

<selector xpath=″dadx:operation″/>
<field xpath=″@name″/>

</unique>
</element>

Figure 33. DADX schema (Part 2 of 10)

64 Web Services Object Runtime Framework: Implementing DB2 Web Services

<element name=″implements″>
<annotation>

<documentation>
Defines the namespace and location of a set of WSDL bindings
defined elsewhere. This information is imported into the
WSDL document generated for this Web Service.

</documentation>
</annotation>
<complexType>

<attribute name=″namespace″ type=″anyURI″ use=″required″/>
<attribute name=″location″ type=″anyURI″ use=″required″/>

</complexType>
</element>
<element name=″result_set_metadata″>

<annotation>
<documentation>

Defines the metadata for a result set returned by a stored procedure.
Each metadata element defines a global element
in the WSDL for the Web Service.
The metatdata name defines the name of its global element.
The metadata rowName defines the element name of each row.
The metadata contains one or more column definitions.

</documentation>
</annotation>

<complexType>
<sequence>

<element ref=″dadx:column″ minOccurs=″1″ maxOccurs=″unbounded″/>
</sequence>
<attribute name=″name″ type=″NCName″ use=″required″/>
<attribute name=″rowName″ type=″NCName″ use=″required″/>

</complexType>
</element>

Figure 33. DADX schema (Part 3 of 10)

Appendix B. XML schema for the DADX file 65

<element name=″column″>
<annotation>

<documentation>
Defines the metadata for a column of a result set

returned by a stored procedure.The column name, type, and nullability
must match the values returned by the JDBC result set metadata at run-time.

A column is considered to be nullable unless it is
explicitly defined to not accept nulls. If the ″nullable″
attribute is absent then the column is considered to not be nullable.

The element name associated with the column
is defined by the value of the ″as″ attribute if present,
or the column name otherwise.

The element may contain an XML document,
in which case it must have an ″element″ attribute that
defines the XML Schema name of its root element.

</documentation>
</annotation>

<complexType>
<attribute name=″name″ type=″string″ use=″required″/>
<attribute name=″type″ type=″dadx:columnType″ use=″required″/>
<attribute name=″nullable″ type=″boolean″/>
<attribute name=″as″ type=″string″/>
<attribute name=″element″ type=″QName″/>

</complexType>
</element>

Figure 33. DADX schema (Part 4 of 10)

66 Web Services Object Runtime Framework: Implementing DB2 Web Services

<simpleType name=″columnType″>
<restriction base=″string″>

<enumeration value=″BIGINT″/>
<enumeration value=″CHAR″/>
<enumeration value=″CLOB″/>
<enumeration value=″DATE″/>
<enumeration value=″DECIMAL″/>
<enumeration value=″DOUBLE″/>
<enumeration value=″FLOAT″/>
<enumeration value=″INTEGER″/>
<enumeration value=″NUMERIC″/>
<enumeration value=″REAL″/>
<enumeration value=″SMALLINT″/>
<enumeration value=″TIME″/>
<enumeration value=″TIMESTAMP″/>
<enumeration value=″TINYINT″/>
<enumeration value=″VARCHAR″/>

</restriction>
</simpleType>
<element name=″operation″>

<annotation>
<documentation>

Defines an operation of the Web Service.
Each operation has a unique name and is optionally described
by WSDL documentation.
An operation is defined using one of the supported operators.

</documentation>
</annotation>
<complexType>

<sequence>
<element ref=″wsdl:documentation″ minOccurs=″0″/>
<choice>

<element ref=″dadx:retrieveXML″/>
<element ref=″dadx:storeXML″/>
<element ref=″dadx:query″/>
<element ref=″dadx:update″/>
<element ref=″dadx:call″/>

</choice>
</sequence>
<attribute name=″name″ type=″NCName″ use=″required″/>

</complexType>
</element>

Figure 33. DADX schema (Part 5 of 10)

Appendix B. XML schema for the DADX file 67

<element name=″retrieveXML″>
<annotation>

<documentation>
Retrieves a set of XML documents by composing them from relational data.
This operator requires the DB2 XML Extender.
The mapping from relational data to XML is defined by a
Document Access Definition (DAD) which can be specified
by referring to either a resource file or the name of an XML Collection
that has been previously enabled in the database.
The DAD must define an XML Collection and can use either SQL
or RDB mapping. The DAD behavior may be modified by an override.
If no override is desired, the no_override element must be used.
Otherwise, the SQL_override element must be used for SQL mapping and the
XML_override element must be used for RDB mapping. In either case, the
override string may contain input parameters using the host variable syntax.
The name and type of all parameters must be defined in a list of
parameter elements that are uniquely named within this operation.
</documentation>

</annotation>
<complexType>

<sequence>
<choice>

<element ref=″dadx:DAD_ref″/>
<element ref=″dadx:collection_name″/>

</choice>
<choice>

<element name=″no_override″>
<complexType/>

</element>
<element name=″SQL_override″ type=″string″/>
<element name=″XML_override″ type=″string″/>

</choice>
<element ref=″dadx:parameter″ minOccurs=″0″ maxOccurs=″unbounded″/>

</sequence>
</complexType>
<unique name=″retrieveXmlParameterNames″>

<selector xpath=″dadx:parameter″/>
<field xpath=″@name″/>

</unique>
</element>

Figure 33. DADX schema (Part 6 of 10)

68 Web Services Object Runtime Framework: Implementing DB2 Web Services

<element name=″storeXML″>
<annotation>

<documentation>
Stores an XML document by decomposing it into relational data.
This operator requires the DB2 XML Extender.
The mapping from relational data to XML is defined by a
Document Access Definition (DAD) which can be specified
by referring to either a resource file or the name of an XML Collection
that has been previously enabled in the database.
The DAD must define an XML Collection and must use RDB mapping.
</documentation>

</annotation>
<complexType>

<choice>
<element ref=″dadx:DAD_ref″/>
<element ref=″dadx:collection_name″/>

</choice>
</complexType>

</element>
<element name=″query″>

<annotation>
<documentation>

Retrieves a set of relational data using an SQL SELECT statement.
The result set must consist of uniquely named columns.
If any result set column contains XML documents, the XML document

type must be defined using an XML_result element.
The statement may contain input parameters using the host variable syntax.
The input parameters must be defined by a list of parameter

elements that are uniquely named within this operation.
</documentation>

</annotation>
<complexType>

<sequence>
<element name=″SQL_query″ type=″string″/>
<element ref=″dadx:XML_result″ minOccurs=″0″ maxOccurs=″unbounded″/>
<element ref=″dadx:parameter″ minOccurs=″0″ maxOccurs=″unbounded″/>

</sequence>
</complexType>
<unique name=″XML_resultNames″>

<selector xpath=″dadx:XML_result″/>
<field xpath=″@name″/>

</unique>
<unique name=″queryParameterNames″>

<selector xpath=″dadx:parameter″/>
<field xpath=″@name″/>

</unique>
</element>

Figure 33. DADX schema (Part 7 of 10)

Appendix B. XML schema for the DADX file 69

<element name=″update″>
<annotation>

<documentation>
Updates a relational table using an SQL INSERT,UPDATE,or DELETE

statement and reports the number of rows affected.
The statement may contain input parameters using the host variable syntax.
The input parameters must be defined by a list of parameter

elements that are uniquely named within this operation.
</documentation>

</annotation>
<complexType>

<sequence>
<element name=″SQL_update″ type=″string″/>
<element ref=″dadx:parameter″ minOccurs=″0″ maxOccurs=″unbounded″/>

</sequence>
</complexType>
<unique name=″updateParameterNames″>

<selector xpath=″dadx:parameter″/>
<field xpath=″@name″/>

</unique>
</element>

Figure 33. DADX schema (Part 8 of 10)

70 Web Services Object Runtime Framework: Implementing DB2 Web Services

<element name=″call″>
<annotation>

<documentation>
Calls a stored procedure.The call statement contains

in, out, and in/out parameters using host variable syntax.
The parameters are defined by a list of parameter elements

that are uniquely named within the operation.
</documentation>

</annotation>
<complexType>

<sequence>
<element name=″SQL_call″ type=″string″/>
<element ref=″dadx:parameter″ minOccurs=″0″ maxOccurs=″unbounded″/>
<element ref=″dadx:result_set″ minOccurs=″0″ maxOccurs=″unbounded″/>

</sequence>
</complexType>
<unique name=″callParameterNames″>

<selector xpath=″dadx:parameter″/>
<field xpath=″@name″/>

</unique>
<unique name=″callResultSetNames″>

<selector xpath=″dadx:result_set″/>
<field xpath=″@name″/>

</unique>
</element>

<element name=″result_set″>
<annotation>
<documentation>

Defines a result set. The name defines the element name of
the result set and becomes part of the output message. The metatdata name

refers to a result set metadata element defined in the same document.
</documentation>

</annotation>
<complexType>

<attribute name=″name″ type=″NCName″ use=″required″/>
<attribute name=″metadata″ type=″NCName″ use=″required″/>

</complexType>
</element>

<element name=″DAD_ref″ type=″string″/>
<element name=″collection_name″ type=″string″/>
<element name=″parameter″>

<annotation>
<documentation>

Defines a named parameter. A parameter must have it contents defined either
by an XML Schema element or type, but not both.The parameter kind in one of in,

out, or in/out, with in being the default.
</documentation>

</annotation>

Figure 33. DADX schema (Part 9 of 10)

Appendix B. XML schema for the DADX file 71

<complexType>
<attribute name=″name″ type=″NCName″ use=″required″/>
<attribute name=″element″ type=″QName″/>
<attribute name=″type″ type=″QName″/>
<attribute name=″kind″ type=″dadx:parameterKindType″ default=″in″/>

</complexType>
</element>
<simpleType name=″parameterKindType″>

<restriction base=″string″>
<enumeration value=″in″/>
<enumeration value=″out″/>
<enumeration value=″in/out″/>

</restriction>
</simpleType>
<element name=″XML_result″>

<annotation>
<documentation>

Defines a named column that contains XML documents. The document type
must be defined by the XML Schema element of its root.

</documentation>
</annotation>
<complexType>

<attribute name=″name″ type=″NCName″ use=″required″/>
<attribute name=″element″ type=″QName″ use=″required″/>

</complexType>
</element>

</schema>

Figure 33. DADX schema (Part 10 of 10)

72 Web Services Object Runtime Framework: Implementing DB2 Web Services

Appendix C. Sample files

The following sections provide the longer sample files used throughout this
document. In the example, the database is called SALES_DB, which is the sample
database used in the documentation and samples shipped with DB2 XML Extender
Version 7.2 FixPak 7. The SALES_DB database stores information about part orders.

Suppose that you must provide a Web Service that retrieves orders based on the
following conditions:
v find all the orders
v find all the orders for parts of a specified color
v find all the orders whose price is greater than or equal to a minimum price

You create a DADX file named PartOrders.dadx that contains the following
operations:
v findAll
v findByColor
v findByMinPrice

You create a Web Service by deploying the PartOrders.dadx file to the services
Web application which has been configured with the dxx_sales_db instance of
WORF. The deployment location of this file is WEB-
INF/classes/groups/dxx_sales_db/PartOrders.dadx.

The Web Service supports access by the following protocols:
v HTTP GET
v HTTP POST
v HTTP SOAP

HTTP GET and POST are useful for simple access from Web browsers. In this case,
the request uses the content type of application/x-www-form-urlencoded.

For example, suppose the Web services are deployed on the host
www.mycompany.com. The following URLs would invoke the Web services using
HTTP GET:
v http://www.mycompany.com /services/sales/PartOrders.dadx /findAll

v http://www.mycompany.com /services/sales/PartOrders.dadx
/findByColor?color=red

v http://www.mycompany.com /services/sales/PartOrders.dadx
/findByMinPrice?minprice=20000

This syntax encodes the method in the URL as the extra path information and the
parameters as the query string. The responses to these requests have a content type
of text/xml. For HTTP POST the query string is sent in the body of the request
instead of the URL, but its content type is still application/x-www-form-
urlencoded. Here is an example of an HTTP POST request when captured with a
TCP trace utility. The example shows both the HTTP header and body:
POST /services/sales/PartOrders.dadx/findByColor HTTP/1.1
User-Agent: Java1.3.0
Host: localhost:9081

© Copyright IBM Corp. 2002 73

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
Content-type: application/x-www-form-urlencoded
Content-length: 12
color=red+++

A Web Service defined by a DADX file is self-describing. It dynamically generates
a documentation and test page, WSDL documents, and XML Schema. The
following HTTP GET URL requests the documentation and test page:
http://www.mycompany.com/services
/sales/PartOrders.dadx/TEST

The following HTTP GET URL requests the WSDL description of the service:
http://www.mycompany.com/services
/sales/PartOrders.dadx/WSDL

For HTTP SOAP, the services are invoked by sending SOAP envelopes using POST
to the URL:
http://www.mycompany.com/services
/sales/PartOrders.dadx/SOAP

But with a request content type of text/xml instead of application/x-www-form-
urlencoded. Here is an example of a SOAP request when traced with a TCP
monitor like the one built into WebSphere Studio, or the one that is part of Apache
SOAP. This example includes the HTTP header information and the HTTP body:
POST /services/sales/PartOrders.dadx/SOAP HTTP/1.0
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: 547
SOAPAction: "http://tempuri.org/sales/PartOrders.dadx"

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Body>
<ns1:findByColor xmlns:ns1="http://tempuri.org/sales/PartOrders.dadx" SOAP-
ENV:encodingStyle="http://xml.apache.org/xml-soap/literalxml">
<color xsi:type="xsd:string" SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">red </color>
</ns1:findByColor>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

.

PartOrder DADX file
PartOrders.dadx implements all three of its operations using the <retrieveXML>
operator which uses the XML collection access method. In general, each operation
can use a different operator and access method.

74 Web Services Object Runtime Framework: Implementing DB2 Web Services

<?xml version=″1.0″?>
<DADX xmlns=″http://schemas.ibm.com/db2/dxx/dadx″

xmlns:xsd=″http://www.w3.org/1999/XMLSchema″>
<wsdl:documentation xmlns:wsdl=″http://schemas.xmlsoap.org/wsdl/″

xmlns=″http://www.w3.org/1999/xhtml″>
Provides queries for part order information at myco.com.
See

PartOrders.html for more information.
</wsdl:documentation>

<operation name=″findAll″>
<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>

Returns all the orders with their complete details.
</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>
select o.order_key, customer_name, customer_email,

p.part_key, color, quantity, price, tax, ship_id, date, mode
from order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16)
as ship_id, date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
order by order_key, part_key, ship_id
</SQL_override>

</retrieveXML>
</operation>

Figure 34. The PortOrder.DADX file (Part 1 of 3)

<operation name=″findByColor″>
<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>Returns all
the orders that include one or more parts that have the specified
color, and only shows the details for those parts.</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>

select o.order_key, customer_name, customer_email,
p.part_key, color, quantity, price, tax, ship_id, date, mode

from order_tab o, part_tab p,
table(select substr(char(timestamp(generate_unique())),16)

as ship_id, date, mode, part_key from ship_tab) s
where p.order_key = o.order_key and s.part_key = p.part_key

and color = :color
order by order_key, part_key, ship_id

</SQL_override>
<parameter name=″color″ type=″xsd:string″/>

</retrieveXML>
</operation>

Figure 34. The PortOrder.DADX file (Part 2 of 3)

Appendix C. Sample files 75

getstart_xcollection.dad file
The DADX file references the following XML Extender DAD file. This file specifies
the structure of XML documents that are to be created using the <retrieveXML>
operation.

<operation name=″findByMinPrice″>
<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>Returns all

the orders that include one or more parts that have a price greater than
or equal to the specified minimum price, and only shows the details for
those parts.</wsdl:documentation

<retrieveXML>
<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>

select o.order_key, customer_name, customer_email,
p.part_key, color, quantity, price, tax, ship_id, date, mode

from order_tab o, part_tab p,
table(select substr(char(timestamp(generate_unique())),16)

as ship_id, date, mode, part_key from ship_tab) s
where p.order_key = o.order_key and s.part_key = p.part_key

and p.price >= :minprice
order by order_key, part_key, ship_id

</SQL_override>
<parameter name=″minprice″ type=″xsd:decimal″/>

</retrieveXML>
</operation>

</DADX>

Figure 34. The PortOrder.DADX file (Part 3 of 3)

<?xml version=″1.0″?>
<!DOCTYPE DAD SYSTEM ″c:\dxx\dtd\dad.dtd″>
<DAD>
<validation>NO</validation>
<Xcollection>
<SQL_stmt>select o.order_key, customer_name, customer_email, p.part_key,

color, quantity, price, tax, ship_id, date, mode
from order_tab o, part_tab p,
table(select substr(char(timestamp(generate_unique())),16) as ship_id, date,
mode, part_key from ship_tab) s

where o.order_key = 1 and p.price > 20000 and
p.order_key = o.order_key and
s.part_key = p.part_key

ORDER BY order_key, part_key, ship_id</SQL_stmt>

Figure 35. The getstart_xcollection.dad file (Part 1 of 3)

76 Web Services Object Runtime Framework: Implementing DB2 Web Services

POIAPartOrders.dadx file
The POIAPartOrders.dadx file shows how an individual application implements a
standard Web service.

<prolog>?xml version=″1.0″?</prolog>
<doctype>!DOCTYPE Order SYSTEM ″c:\dxx\samples\dtd\getstart.dtd″</doctype>
<root_node>
<element_node name=″Order″>

<attribute_node name=″key″>
<column name=″order_key″/>

</attribute_node>
<element_node name=″Customer″>

<element_node name=″Name″>
<text_node><column name=″customer_name″/></text_node>

</element_node>
<element_node name=″Email″>

<text_node><column name=″customer_email″/></text_node>
</element_node>

</element_node>

Figure 35. The getstart_xcollection.dad file (Part 2 of 3)

<element_node name=″Part″>
<attribute_node name=″color″>

<column name=″color″/>
</attribute_node>
<element_node name=″key″>

<text_node><column name=″part_key″/></text_node>
</element_node>
<element_node name=″Quantity″>

<text_node><column name=″quantity″/></text_node>
</element_node>
<element_node name=″ExtendedPrice″>

<text_node><column name=″price″/></text_node>
</element_node>
<element_node name=″Tax″>

<text_node><column name=″tax″/></text_node>
</element_node>
<element_node name=″Shipment″ multi_occurrence=″YES″>

<element_node name=″ShipDate″>
<text_node><column name=″date″/></text_node>

</element_node>
<element_node name=″ShipMode″>

<text_node><column name=″mode″/></text_node>
</element_node>

</element_node>
</element_node>

</element_node>
</root_node>
</Xcollection>
</DAD>

Figure 35. The getstart_xcollection.dad file (Part 3 of 3)

Appendix C. Sample files 77

<?xml version=″1.0″?>
<DADX xmlns=″http://schemas.ibm.com/db2/dxx/dadx″

xmlns:xsd=″http://www.w3.org/1999/XMLSchema″>
<wsdl:documentation xmlns:wsdl=″http://schemas.xmlsoap.org/wsdl/″

xmlns=″http://www.w3.org/1999/xhtml″>
Provides queries for part order information at myco.com.
This Web Service is compliant with the Part Ordering Industry
Association standard.
See <a href=″../documentation/PoiaPartOrders.html″

target=″_top″>PoiaPartOrders.html for more information.
</wsdl:documentation>

Figure 36. The PoiaPartOrders.dadx (Part 1 of 4)

<implements namespace=″http://www.poia.org/PartOrders.wsdl″
location=″http://www.poia.org/PartOrders.wsdl″/>

<operation name=″findAll″>
<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>Returns

all the orders with their complete details.</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>
select o.order_key, customer_name, customer_email,

p.part_key, color, quantity, price, tax, ship_id, date, mode
from order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16)
as ship_id, date, mode, part_key from ship_tab) s

where p.order_key = o.order_key and s.part_key = p.part_key
order by order_key, part_key, ship_id
</SQL_override>

</retrieveXML>
</operation>

Figure 36. The PoiaPartOrders.dadx (Part 2 of 4)

78 Web Services Object Runtime Framework: Implementing DB2 Web Services

WSDL files
The WSDL files generated from the Getting Started examples.

The deployable part:

<operation name=″findByColor″>
<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>

Returns all the orders that include one or more parts that
have the specified color, and only shows the details for
those parts.

</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>

select o.order_key, customer_name, customer_email,
p.part_key, color, quantity, price, tax, ship_id, date, mode

from order_tab o, part_tab p,
table(select substr(char(timestamp(generate_unique())),16)

as ship_id, date, mode, part_key from ship_tab) s
where p.order_key = o.order_key and s.part_key = p.part_key

and color = :color
order by order_key, part_key, ship_id

</SQL_override>
<parameter name=″color″ type=″xsd:string″/>

</retrieveXML>
</operation>

Figure 36. The PoiaPartOrders.dadx (Part 3 of 4)

<operation name=″findByMinPrice″>
<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>

Returns all the orders that include one or more parts that
have a price greater than or equal to the specified minimum
price, and only shows the details for those parts.

</wsdl:documentation>
<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>
<SQL_override>

select o.order_key, customer_name, customer_email,
p.part_key, color, quantity, price, tax, ship_id, date, mode

from order_tab o, part_tab p,
table(select substr(char(timestamp(generate_unique())),16) x

as ship_id, date, mode, part_key from ship_tab) s
where p.order_key = o.order_key and s.part_key = p.part_key

and p.price >= :minprice
order by order_key, part_key, ship_id

</SQL_override>
<parameter name=″minprice″ type=″xsd:decimal″/>

</retrieveXML>
</operation>

</DADX>

Figure 36. The PoiaPartOrders.dadx (Part 4 of 4)

Appendix C. Sample files 79

The reusable part:

<?xml version="1.0" encoding="UTF-8"?>
<definitions
targetNamespace=

"http://localhost:8080/services/sales/PartOrders.dadx/WSDLservice"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:binding=

"http://localhost:8080/services/sales/PartOrders.dadx/WSDLbinding"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://localhost:8080/services/sales/PartOrders.dadx/WSDLservice">
<import
location="http://localhost:8080/services/sales/PartOrders.dadx/WSDLbinding"
namespace="http://localhost:8080/services/sales/PartOrders.dadx/WSDLbinding"/>
<service name="theService">
<port binding="binding:theSoapBinding" name="theSoapPort">

<soap:address
location="http://localhost:8080/services/sales/PartOrders.dadx/SOAP"/>

</port>
<port binding="binding:theGetBinding" name="theGetPort">

<http:address location=
"http://localhost:8080/services/sales/PartOrders.dadx/"/>

</port>
<port binding="binding:thePostBinding" name="thePostPort">

<http:address location=
"http://localhost:8080/services/sales/PartOrders.dadx/"/>

</port>
</service>

</definitions>

Figure 37. PartOrders-service.wsdl: deployment WSDL part

<?xml version=″1.0″ encoding=″UTF-8″?>
<definitions

targetNamespace=
″http://localhost:8080/services/sales/PartOrders.dadx/WSDLbinding″

xmlns=″http://schemas.xmlsoap.org/wsdl/″
xmlns:http=″http://schemas.xmlsoap.org/wsdl/http/″
xmlns:mime=″http://schemas.xmlsoap.org/wsdl/mime/″
xmlns:soap=″http://schemas.xmlsoap.org/wsdl/soap/″
xmlns:tns=″http://localhost:8080/services/sales/PartOrders.dadx/WSDLbinding″
xmlns:xsd-1999=″http://www.w3.org/1999/XMLSchema″
xmlns:xsd1=″http://localhost:8080/services/sales/PartOrders.dadx/XSD″>
<wsdl:documentation

xmlns=″http://www.w3.org/1999/xhtml″
xmlns:wsdl=″http://schemas.xmlsoap.org/wsdl/″>
Provides queries for part order information at myco.com.
See
PartOrders.html
 for more information.

</wsdl:documentation>

Figure 38. PartOrders-binding.wsdl: reusable WSDL part (Part 1 of 7)

80 Web Services Object Runtime Framework: Implementing DB2 Web Services

<types>
<schema

targetNamespace=
″http://localhost:8080/services/sales/PartOrders.dadx/XSD″

xmlns=″http://www.w3.org/2001/XMLSchema″
xmlns:imp1=″http://schemas.ibm.com/db2/dxx/samples/dtd/getstart.dtd″
xmlns:tns=″http://localhost:8080/services/sales/PartOrders.dadx/XSD″>
<import

nameSpace=″http://schemas.ibm.com/db2/dxx/samples/dtd/getstart.dtd″
schemaLocation=

″http://localhost:8080/services/sales/dxx/samples/dtd/getstart.dtd/XSD″/>
<element name=″findAllResult″>

<complexType>
<sequence>

<element maxOccurs=″unbounded″ minOccurs=″0″ ref=″imp1:Order″/>
</sequence>

</complexType>
</element>
<element name=″findByColorResult″>

<complexType>
<sequence>

<element maxOccurs=″unbounded″ minOccurs=″0″ ref=″imp1:Order″/>
</sequence>

</complexType>
</element>
<element name=″findByMinPriceResult″>

<complexType>
<sequence>

<element maxOccurs=″unbounded″ minOccurs=″0″ ref=″imp1:Order″/>
</sequence>

</complexType>
</element>

</schema>
</types>

Figure 38. PartOrders-binding.wsdl: reusable WSDL part (Part 2 of 7)

<message name=″findAllInput″/>
<message name=″findAllOutput″>

<part element=″xsd1:findAllResult″ name=″return″/>
</message>
<message name=″findByColorInput″>

<part name=″color″ type=″xsd-1999:string″/>
</message>
<message name=″findByColorOutput″>

<part element=″xsd1:findByColorResult″ name=″return″/>
</message>
<message name=″findByMinPriceInput″>

<part name=″minprice″ type=″xsd-1999:decimal″/>
</message>
<message name=″findByMinPriceOutput″>

<part element=″xsd1:findByMinPriceResult″ name=″return″/>
</message>

Figure 38. PartOrders-binding.wsdl: reusable WSDL part (Part 3 of 7)

Appendix C. Sample files 81

<portType name=″thePortType″>
<operation name=″findAll″>

<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>
Returns all the orders with their complete details.

</wsdl:documentation>
<input message=″tns:findAllInput″/>
<output message=″tns:findAllOutput″/>

</operation>
<operation name=″findByColor″>

<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>
Returns all the orders that include one or more parts that have the
specified color, and only shows the details for those parts.

</wsdl:documentation>
<input message=″tns:findByColorInput″/>
<output message=″tns:findByColorOutput″/>

</operation>
<operation name=″findByMinPrice″>

<wsdl:documentation xmlns=″http://schemas.xmlsoap.org/wsdl/″>
Returns all the orders that include one or more parts that have a
price greater than or equal to the specified minimum price, and only
shows the details for those parts.

</wsdl:documentation>
<input message=″tns:findByMinPriceInput″/>
<output message=″tns:findByMinPriceOutput″/>

</operation>
</portType>

Figure 38. PartOrders-binding.wsdl: reusable WSDL part (Part 4 of 7)

82 Web Services Object Runtime Framework: Implementing DB2 Web Services

<binding name=″theSoapBinding″ type=″tns:thePortType″>
<soap:binding style=″rpc″ transport=

″http://schemas.xmlsoap.org/soap/http″>
<operation name=″findAll″>

<soap:operation soapAction=″urn:/sales/PartOrders.dadx″/>
<input>

<soap:body namespace=″urn:/sales/PartOrders.dadx″ use=″literal″/>
</input>
<output>

<soap:body namespace=″urn:/sales/PartOrders.dadx″ use=″literal″/>
</output>

</operation>
<operation name=″findByColor″>

<soap:operation soapAction=″urn:/sales/PartOrders.dadx″/>
<input>

<soap:body namespace=″urn:/sales/PartOrders.dadx″ use=″literal″/>
</input>
<output>

<soap:body namespace=″urn:/sales/PartOrders.dadx″ use=″literal″/>
</output>

</operation>
<operation name=″findByMinPrice″>

<soap:operation soapAction=″urn:/sales/PartOrders.dadx″/>
<input>

<soap:body namespace=″urn:/sales/PartOrders.dadx″ use=″literal″/>
</input>
<output>

<soap:body namespace=″urn:/sales/PartOrders.dadx″ use=″literal″/>
</output>

</operation>
</soap:binding>

</binding>

Figure 38. PartOrders-binding.wsdl: reusable WSDL part (Part 5 of 7)

Appendix C. Sample files 83

<binding name=″theGetBinding″ type=″tns:thePortType″>
<http:binding verb=″GET″/>
<operation name=″findAll″>

<http:operation location=″findAll″/>
<input>

<http:urlEncoded/>
</input>
<output>

<mime:mimeXml/>
</output>

</operation>
<operation name=″findByColor″>

<http:operation location=″findByColor″/>
<input>

<http:urlEncoded/>
</input>
<output>

<mime:mimeXml/>
</output>

</operation>
<operation name=″findByMinPrice″>

<http:operation location=″findByMinPrice″/>
<input>

<http:urlEncoded/>
</input>
<output>

<mime:mimeXml/>
</output>

</operation>
</binding>

Figure 38. PartOrders-binding.wsdl: reusable WSDL part (Part 6 of 7)

84 Web Services Object Runtime Framework: Implementing DB2 Web Services

<binding name=″thePostBinding″ type=″tns:thePortType″>
<http:binding verb=″POST″/>
<operation name=″findAll″>

<http:operation location=″findAll″/>
<input>

<mime:content type=″application/x-www-form-urlencoded″/>
</input>
<output>

<mime:mimeXml/>
</output>

</operation>
<operation name=″findByColor″>

<http:operation location=″findByColor″/>
<input>

<mime:content type=″application/x-www-form-urlencoded″/>
</input>
<output>

<mime:mimeXml/>
</output>

</operation>
<operation name=″findByMinPrice″>

<http:operation location=″findByMinPrice″/>
<input>

<mime:content type=″application/x-www-form-urlencoded″/>
</input>
<output>

<mime:mimeXml/>
</output>

</operation>
</binding>

</definitions>

Figure 38. PartOrders-binding.wsdl: reusable WSDL part (Part 7 of 7)

Appendix C. Sample files 85

86 Web Services Object Runtime Framework: Implementing DB2 Web Services

Appendix D. Encoding algorithm

This is an algorithm that encodes and decodes the password within the
group.properties file.
1. Convert the clear text information into a sequence of data bytes using UTF-8

character encoding. Let L be the length of the data byte sequence.
2. Convert the data bytes into a further sequence of data bytes, data8, that is 8

times longer. Byte k of data8 is computed as follows. Let k = j * L + i where 0
<= i < L and 0 <= j < 8. First mask bit j of data byte i. Second, exclusive or this
with k. This step distributes the bits of each data byte throughout the length of
the data8 sequence.

3. Apply the standard base64 encoding algorithm to data8. This step renders the
bytes as printable characters and also increases the length by a factor of 4/3.

4. Prefix the encoded string with ″encoded:″ to denote that it has been encoded.

© Copyright IBM Corp. 2002 87

88 Web Services Object Runtime Framework: Implementing DB2 Web Services

Appendix E. Command reference

This section represents the commands you can use to do specific functions within
WORF.

Encoder
Encodes or decodes a password in the group.properties file. For more
information on the encoding algorithm, see Appendix D, “Encoding
algorithm” on page 87.
v Example of encoding (assumes that worf.jar is listed in the

CLASSPATH): java com.ibm.etools.webservice.rt.util.Encoder -in
group.properties -out group.properties

v Example of decoding (assumes that worf.jar is listed in the
CLASSPATH): java com.ibm.etools.webservice.rt.util.Encoder
-action decode -in group.properties -out group.properties

Dadx2Dd
Generates a deployment descriptor from a DADX file. For information on
the parameters to use with this command, see step 2 on page 47.
v Example: java com.ibm.etools.webservice.rt.dadx.Dadx2Dd

Check_install
Validates a DADX file. For information on the parameters to use with this
command, see “Parameters” on page 56.
v Example: java com.ibm.etools.webservice.util.Check_install [-srv]

[-schdir pathToSchemasDir] [-sch schemaLocations] [-out
outputFile] fileToCheck

dadchecker
Validates a DAD file. For more information on the parameters to use with
this command, see http://www.ibm.com/software/data/db2
/extenders/xmlext/download/beta/dadcheck_rn.html
v Example: java dadchecker.Check_dad_xml [-dad | -xml] [-all] [-dup

dupName] [-enc encoding][-dtd dtdPath] [-xstruct xmlDocument]
[-out outputFile] fileToCheck

© Copyright IBM Corp. 2002 89

http://www.ibm.com/software/data/db2/extenders/xmlext/download/beta/dadcheck_rn.html
http://www.ibm.com/software/data/db2/extenders/xmlext/download/beta/dadcheck_rn.html

90 Web Services Object Runtime Framework: Implementing DB2 Web Services

Appendix F. Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country/region or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002 91

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM for the purposes of developing, using, marketing, or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

92 Web Services Object Runtime Framework: Implementing DB2 Web Services

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both, and have been used in
at least one of the documents in the DB2 UDB documentation library.

ACF/VTAM
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
BookManager
C Set++
C/370
CICS
Database 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eServer
Extended Services
FFST
First Failure Support Technology
IBM
IMS
IMS/ESA
iSeries

LAN Distance
MVS
MVS/ESA
MVS/XA
Net.Data
NetView
OS/390
OS/400
PowerPC
pSeries
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/400
SQL/DS
System/370
System/390
SystemView
Tivoli
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WebSphere
WIN-OS/2
z/OS
zSeries

The following terms are trademarks or registered trademarks of other companies
and have been used in at least one of the documents in the DB2 UDB
documentation library:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Appendix F. Notices 93

Other company, product, or service names may be trademarks or service marks of
others.

94 Web Services Object Runtime Framework: Implementing DB2 Web Services

Bibliography

v DB2 Universal Database SQL Reference, Volume 1,
SC09-4844

v DB2 Universal Database SQL Reference, Volume 2,
SC09-4845

v DB2 Universal Database WebSphere Performance
Tuning Guide, SG24-6417-00

v DB2 XML Extender: Administration and
Programming, SC27-1234-00

v DB2 XML Extender: Administration and
Programming, Version 7.2 Release Notes

v Apache Jakarta Tomcat Version 4 documentation,
available at http://jakarta.apache.org/tomcat/tomcat-
4.1-doc/index.html

v Using WSDL in a UDDI Registry 1.07, available
at http://www.uddi.org/pubs/wsdlbestpractices-
V1.07-Open-20020521.pdf

v Web Services Description Language (WSDL) 1,1,
available at http://www.w3.org/TR/2001/NOTE-
wsdl-20010315

v Web Sphere Application Server documentation
available at http://www-
3.ibm.com/software/webservers/appserv/library.html

© Copyright IBM Corp. 2002 95

http://jakarta.apache.org/tomcat/
http://jakarta.apache.org/tomcat/
http://www.uddi.org/pubs/wsdlbestpractices-V1.07-Open-20020521.pdf
http://www.uddi.org/pubs/wsdlbestpractices-V1.07-Open-20020521.pdf
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www-3.ibm.com/software/webservers/appserv/library.html
http://www-3.ibm.com/software/webservers/appserv/library.html

96 Web Services Object Runtime Framework: Implementing DB2 Web Services

Index

A
Apache Jakarta Tomcat 11
Apache SOAP 2.2 6
automatic reloading 1, 21
autoReload 26

C
Call operation example 42
ConfigManager 10, 47
connection configuration 22
connection pooling 10
Create Data Source Wizard 10

D
DAD file 3
DAD file error checking 60
dad.dtd 23
DADX 26
DADX environment checker 55
DADX file error checking 61
DADX, definition 3
dadx.xsd 63
datasourceJNDI 25
DB2 SAMPLE database 6, 11, 15
dbDriver 25
dbURL 25
deployment descriptor file, creating 47
dxxInsertXML 45
DxxInvoker 22
dxxShredXML 45

E
enableXmlClob 26

G
getstart.dtd 23
groups 22

H
HelloSample.dadx 15
HelloSample.wsdl 18
HelloSample1.dadx 20
HTTP GET bindings 17
HTTP POST binding 17
HTTP SOAP binding 18

I
initialContextFactory 25

J
Jakarta Tomcat 11
jar files 12

N
namespaceTable 26
NST file 51
NST files, error checking 59

O
overriding 35

P
parameters 37

Q
Query operation example 39

R
RDB mapping 35
reloadIntervalSeconds 26
resource-based deployment 1
retrieveXML 21
RetrieveXML operation example 43

S
services.war 7, 13
SOAP binding 18
SOAP bindings 17
SQL mapping 35
SQL operations type 4
storeXML 21
StoreXML operation example 44

U
Update operation example 42

W
WAS Administrator’s Console 7
Web application welcome page 8
Web archives files 47
Web service groups 22
Web services Sample Page 13
Web services, definition 1
web.xml 23
WebSphere Application Server (WAS)

Advanced Edition 6
WSDL, definition 51

X
XML collection operation type 3
XML schema file 19
XML Schema Simple Type 37, 38
XML vocabulary 51
XMLDrivenConfigManager 10, 47
XSD 2
XSD files 51

© Copyright IBM Corp. 2002 97

98 Web Services Object Runtime Framework: Implementing DB2 Web Services

Contacting IBM

In the United States, call one of the following numbers to contact IBM:
v 1-800-237-5511 for customer service
v 1-888-426-4343 to learn about available service options
v 1-800-IBM-4YOU (426-4968) for DB2 marketing and sales

In Canada, call one of the following numbers to contact IBM:
v 1-800-IBM-SERV (1-800-426-7378) for customer service
v 1-800-465-9600 to learn about available service options
v 1-800-IBM-4YOU (1-800-426-4968) for DB2 marketing and sales

To locate an IBM office in your country or region, check IBM’s Directory of
Worldwide Contacts on the web at www.ibm.com/planetwide

Product information
Information regarding DB2 Universal Database products is available by telephone
or by the World Wide Web at www.ibm.com/software/data/db2/udb

This site contains the latest information on the technical library, ordering books,
client downloads, newsgroups, FixPaks, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM
Worldwide page at www.ibm.com/planetwide

© Copyright IBM Corp. 2002 99

����

Printed in U.S.A.

	Contents
	About this document
	Who should read this document
	Related information
	How to send your comments

	Chapter 1. Web services Object Runtime Framework
	Overview
	Features
	The DADX file

	Chapter 2. Installing and configuring WORF
	Software requirements for UNIX® and Windows
	Downloading and accessing WORF
	Configuring WORF for WebSphere Application Server on UNIX and Windows
	Installing the software requirements
	Installing WORF on WAS Version 4.01 or Version 5.0
	Using connection pooling to improve performance
	Troubleshooting

	Configuring WORF for Apache Jakarta Tomcat on UNIX and Windows
	Installing the software requirements
	Installing WORF on Apache Jakarta Tomcat

	Chapter 3. Creating a DB2 Web service with WORF
	Scenario
	Testing the Web service
	Accessing the Web service
	SOAP binding
	Web services definition language
	UDDI business registries
	XML schema definitions
	Documentation
	Automatic Reloading

	Overview of the process
	Defining a group of Web services
	Before you begin
	Defining the web.xml and group.properties files
	Customizing the group.properties file

	Defining the Web service with the DADX file
	Syntax of the DADX file
	A simple DADX
	XML collection operations
	Using overrides in the DADX
	Declaring and referencing parameters in the DADX
	DADX operation examples

	Chapter 4. Packaging your DB2 Web service
	Generating deployment descriptors
	Creating the WAR file
	Testing the Web service

	Chapter 5. Generating XSD and WSDL files from the DADX
	Converting a DTD to an XSD file
	Generating WSDL from the DADX
	Generating WSDL for UDDI registration

	Appendix A. DADX environment checker
	Purpose and operation of the DADX environment checker
	Installing the DADX environment checker

	Running the DADX environment checker
	Parameters
	Sample files

	Indicating errors and warnings in the output text file
	Checks performed by the DADX environment checker
	Connection to the database with which the group is associated
	Checks performed on the web.xml
	Checks performed on NST files
	Checks performed on DAD files
	Checks on DADX files

	Appendix B. XML schema for the DADX file
	Appendix C. Sample files
	PartOrder DADX file
	getstart_xcollection.dad file
	POIAPartOrders.dadx file
	WSDL files

	Appendix D. Encoding algorithm
	Appendix E. Command reference
	Appendix F. Notices
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

